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Abstract: The popularity of virtual assistants has been rising at an exponential rate, but they all use the same
unnatural method of keyword activation. The goal of this project was to develop a novel system to provide a
more natural interface for interacting with virtual assistant devices. To achieve this, we developed an attention
detection system using a multitask cascaded convolutional neural network for face detection and a
convolutional neural network for attention classification. The face detector performs with a true positive rate of
95.04%, and the attention classifier performs with 97.2% testing accuracy. The attention detection pipeline was
implemented in a web application simulating a virtual assistant. We plan on improving the generalizability of
the attention classifier by training it on a larger and more diverse dataset, and we plan on implementing the
model in a dedicated device.

1. INTRODUCTION

1.1 Motivation

The use of virtual assistants (VA) has seen a meteoric
rise in past years. In the last two years alone, the
number of VAs in use worldwide has risen from 3.25
billion to 4.2 billion. By 2024 that number is projected
to overtake the world population with approximately
8.4 billion devices [1]. The text-to-speech recognition
segment of the VA market alone was valued at USD
2.2 billion in 2019, and the market is expected to grow
at a rate of 34.4% over 2020 to 2027 [2]. Despite the
technology’s incredible popularity, the way users
interact with the devices has not seen any
development. In social interactions, humans naturally
focus their attention on the speaker; however, none of
the major devices implement vision based interaction
and instead opt for unnatural keyword activation

1.2 Related Works

Developers in the VA field have begun incorporating
computer vision in their products for applications
unrelated to activation. Google has implemented
gesture controls and uses facial recognition for

personalized display in their Nest Hub Max, and
Amazon utilizes face detection to orient the Echo
Show towards the user. Previous applications of
attention detection have largely focused on driver
monitoring. Although they are not designed for VAs,
they operate on the same principles. The most notable
implementation is Comma AI’s driver monitoring
system, which utilizes eye tracking and image
classification to determine whether or not the driver is
paying attention to the road. Researchers at the
Massachusetts Institute of Technology (MIT) built a
gaze estimation model for driver monitoring which
avoids the use of eye tracking [3]. Instead, they opted
to perform face detection with a Histogram of Oriented
Gradients and linear support vector machine to detect
faces, extract the facial landmarks with a cascade of
regressors from a facial landmark mark-up, and
classify the gaze direction in one of six regions with a
random forest classifier.

1.3 Problem Definition

In recent years, the market and use of VAs has grown
rapidly, but the way in which we interact with these
assistants has been largely overlooked. We set out to
design a novel method of interaction, using computer



vision, to provide a user experience that more closely
resembles that of a normal conversation. As mentioned
in Section 1.2, using computer vision for tasks related
to attention detection has been explored before.
CommAI’s driver monitoring system heavily relies on
eye tracking, however, eye detection is unreliable in
this application due to the many angles and lighting
conditions a user may interact with the device at. MIT
proposes a more suitable implementation, however
their system uses a six stage pipeline and is a six class
classifier. For the purposes of VA activation, binary
classification will suffice and is both simpler and less
computationally expensive.

2. METHODOLOGY

2.1 Dataset Generation

Training and evaluation is carried out on a dataset of
10 subjects. For each subject, there are 200 real images
and 324 synthetic images, providing 5240 total images
[4]. The images are varied in illumination,
background, and pose (by up to 30 degrees in either
direction). This dataset was supplemented with an
additional 200 images of a sitting subject with similar
variety. Preprocessing of the images involved
converting to grayscale and resizing to 224 pixels
along the smallest edge (maintaining the aspect ratio).
Each image was labelled as either “attentive” or
“inattentive” based on whether or not the subject was
looking towards the camera. A 20% test split was used
to evaluate the models.

2.2 Solution

The solution consists of a two step pipeline: face
detection and attention classification. If the system
passes the first step (face detection) the attention
classifier is activated and makes the binary decision as
to whether or not the user is focusing their attention on
the device.

2.3 Face Detection

A multitask cascaded convolutional neural network [5,
6] (MTCNN) was used to identify if a face is present
in an image frame. The network consists of three
stages in the form of independent convolutional neural
networks (CNN).

The first stage, the proposal network, uses a fully
convolutional network1 (FCN). This network finds
windows in the image that could potentially contain a
face as bounding box regression vectors. The network
performs some refinement to combine overlapping
regions, and outputs the remaining candidate windows.
Next, the refine network performs calibration with
bounding box regression and uses non-maximum
suppression to further combine overlapping windows.
It then outputs whether each candidate contains a face
or not, along with a bounding box and vector for facial
landmark localization (eyes, nose, and mouth).Finally,
the output network operates in a similar fashion to the
refine network, but describes the face in more detail.
This final stage outputs the binary face classification,
along with the bounding box and five absolute
landmark locations: the two eyes, nose, and mouth
corners.

2.4 Attention Classification

Figure 1: A residual block in the ResNet architecture. Layers can
skip subsequent layers in the network through an identity shortcut
connection.

A CNN was used to make a binary classification on
the attentive state of a face. The classifier uses the
ResNet [7] architecture with 50 convolutional layers.
The network achieves far better results with less
training than its shallower counterparts, and manages
to avoid the problem of vanishing gradients2 by
introducing identity shortcut connections. These
connections allow a layer to skip the subsequent layers
and map its output directly to a layer further in the
network as shown in figure 1. The first layer is a 7×7
kernel, the second layer is a 3×3 max pool, and each
subsequent layer is a 3×3 kernel, all using rectified
linear unit activation. Dropout was applied for
regularization and to prevent co-adaptation of neurons.

2 Repeated multiplication during backpropagation causes the
gradient to shrink. If a network is sufficiently deep, this will cause
massive degradation in performance.

1 A CNN without a dense layer.



Training was performed with the Adam optimizer [8]
using negative log likelihood loss for 10 epochs.

2.5 Virtual Assistant Integration

The model was implemented in a Streamlit
web-application made to simulate a VA device. The
model analyzes every other frame to make its
classification on the user’s attentive state. When the
user is attentive for 10 consecutive frames (five
consecutive positive classifications from the model),
the app waits for the user to begin speaking and listens
until they complete their sentence. The recording is
then sent to a custom Dialogflow agent through the
dialogflow API and both the audio and text responses
are displayed to the user.

3. RESULTS AND DISCUSSION

The face detector performs at a true positive rate of
95.04% and the attention classifier achieved an
accuracy of 97.2% on the test set.

Figure 2: Learning curve of the attention classifier.

The accuracy of the models closely reflects its
practical performance in conditions similar to the
training data. Interacting with the assistant was a
nearly seamless user experience3, and false positives
were handled by the assistant activation logic in the
application. False negatives from the classifier
occasionally delay the activation of the assistant, but
these occurrences are infrequent enough not to
diminish the overall user experience.

Despite the attention classifier’s accuracy in controlled
conditions, when presented with poor lighting or
unfamiliar angles the performance suffered. This is
likely largely due to the consistent set of lighting and
angles in the training images. Additionally, all the
images were taken at similar distances from the
camera. As such, in significantly unfamiliar conditions

3 Demo interaction is shown at
https://www.youtube.com/watch?v=0-YFEVMPsV8

the model will get stuck on one of the two
classifications.

4. CONCLUSIONS AND FUTURE WORK

The two components of the attention detection pipeline
were successfully built. Both models performed well
in a testing environment and in controlled live
environments. In unfamiliar contexts the attention
classifier did not perform as well. Reflection on the
training data suggests this was due to insufficient
variety in the image attributes. The models were
integrated with a proof of concept VA application and
provided a positive user experience.

We aim to improve the generalizability of the attention
classifier by training on a more varied dataset. Images
of subjects taken from different angles, elevations, and
distances will help the model handle the many edge
cases that arise from live classification. Performance in
poor light conditions may also be improved by adding
more images in low light and with different light
sources. Finally, we plan on implementing the model
and activation logic in a dedicated VA device.
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