

Wearable Brain-Computer Interface Paired with
Large Language Model for Fast Speech

Communication
Christopher Samra

University of Waterloo
csamra@uwaterloo.ca

Livia Murray
University of Waterloo

l8murray@uwaterloo.ca

Dhrumil Patel
University of Waterloo

dhrumil.patel@uwaterloo.ca

Abstract—Current non-invasive wearable brain-computer in-

terfaces for communication are intended for people with neu-

rological conditions who cannot otherwise communicate. One of

the largest challenges with these existing solutions is that their

information transfer rates are much lower than verbal speech.

This limits the quality of life of those who use these interfaces as

it prevents them from speaking as quickly as they would like to,

and in many cases conversations and social interactions that are

time sensitive unfairly exclude these users from participation.

To minimize this problem, our team built an interface that

pairs existing techniques in literature (Electroencephalography,

Steady State Visually Evoked Potentials), with new advancements

in Machine Learning (Large Language Models) to provide

intelligent phrase suggestions based on conversational context.

Preliminary results show our implementation has enabled people

using our interface to communicate over two times faster than

anything we could find in existing literature.

I. INTRODUCTION

A. Motivation

Brain computer interface (BCI) technology can provide a
new channel of communication to humans, especially those
with severe disabilities, such as stroke, spinal cord injury and
amyotrophic lateral sclerosis (ALS) [1].

Many wearable BCI systems use electroencephalography
(EEG) to measure brain activity. EEG measures brain activity
non-invasively by recording electrical activity at the scalp that
arises from large activations of brain cells [2]. A common
paradigm used in EEG BCI literature is known as Steady State
Visually-Evoked Potentials (SSVEP). SSVEP is a type of brain
activity that occurs in response to a continuous visual stimulus
flickering at a specific frequency [3]. SSVEPs are used as input
signals to allow users to control elements of a user interface
on a screen [3]. The basic principle behind SSVEP is that
when a person focuses their attention on a visual stimulus that
flickers at a specific frequency, their visual cortex produces a
corresponding electrical signal at the same frequency [3].

Fig. 1. SSVEP Interface Diagram

One of the common applications for SSVEP interfaces
include keyboards, more commonly known as SSVEP spellers
[3].

B. Related Works
Traditionally, SSVEP speller designs consist of targets of

various alphanumeric characters that are each assigned dif-
ferent frequencies of stimuli. These characters are selected
when the user focuses on the stimuli associated with them
[3]. However, while this may be acceptable for texting, typing
character by character may not be ideal when BCI users want
to speak to others verbally.

One implementation of an SSVEP speller attempted to use
autocomplete to rectify this problem, but in their testing the
researchers did not see information transfer rate (ITR) scores
higher than 78 bits/min [4], this translates to around 5 words
per minute [5].

The best case example of an SSVEP interface using charac-
ters to type that we could find yielded an average ITR of 151
bits/min [6], this translates roughly to 10 words per minute
[5].

These ITRs are too slow to catch up with verbal communi-
cation rates, especially considering the average conversational
verbal speech rate is between 120-150 words per minute [7].

C. Problem Definition

Almost all existing SSVEP speller applications that our
team reviewed have proven to be not suitable for verbal
communication due to their design restricting ITR.

SSVEP spellers have design limitations due to physical
screen space, and the range of most usable stimuli frequencies
(8-18hz) [8]. Because of these restrictions, only a limited
number of interactable keys (buttons with stimuli) can be
present at a given time, meaning character by character typing
can be time consuming. This low ITR problem has a huge
impact when people with neurological conditions attempt to
communicate in time-sensitive social situations, and they can
often feel left behind. In the next section we discuss the
methodology we employ to build out our own SSVEP interface
and how we use a Large Language Model (LLM) to improve
ITR.

II. METHODOLOGY

A. BCI Design

For our EEG device, our team used a gtec Unicorn [9],
we designed custom mounts for the electrodes to fit inside
a modified OpenBCI UltraCortex Mk4 headframe [10], these
design decisions allowed us to take advantage of the gtec’s
better signal clarity in a head-frame that could be fitted to
several different head sizes.

The eight EEG channels provided by the device were placed
on the PO4, O2, OZ, POZ, PO3, O1, PO8, PO7 EEG Electrode
locations [11], chosen for proximity to the occipital region (the
region responsible for processing visual stimulus).

Eight stimuli were chosen with the following frequencies
11.75, 12.75, 10.25, 14.75, 11.25, 8.25, 10.75 and 13.25 hz.
These stimuli were chosen arbitrarily within the 8 to 15Hz
range as this range yielded the best results in our testing.

Fig. 2. Subject Wearing EEG Headset

B. Data Collection and Validation
SSVEP data was collected and visualized offline to validate

signal quality. This was done by applying a bandpass filter
from 6 to 18 hz and visualizing the signals in two ways.

The first being a plot of the Fast Fourier Transform (FFT)
of the EEG signal averaged across trials from a particular
stimuli frequency and EEG channel, the second validation
method involved taking the first Principal Component Analysis
(PCA) component from one trial of a stimuli frequency across
all channels. The response to the stimuli in the SSVEP
data collection method was validated as being correct with
a comparison between these two approaches.

Fig. 3. FFT Averaged Across Trials

Fig. 4. PCA Across EEG Channels

Fig. 5. EEG SSVEP Pipeline Diagram

C. EEG Processing and SSVEP Classification Pipeline

The pipeline ingests raw EEG data at 250 hz. A notch filter
is applied at 60 hz to remove power line noise [12].

For further preprocessing and feature extraction we use
Filterbank Canonical Correlation Analysis (FBCCA). This
consists of two steps, with the first step being a filterbank
technique that decomposes the signal into 10 frequency sub-
bands following the “M3” subband decomposition from [6].

The second step involves using Canonical Correlation Anal-
ysis (CCA). CCA takes in both the processed EEG subbands
and the sinusoidal reference templates matching the stimuli
base and harmonic frequencies to identify correlation between
the EEG signal and the stimuli frequencies [13].

To do this CCA computes pairs of coefficient vectors that
correspond to projections on the EEG data and the reference
templates [13]. We then compute a correlation statistic be-
tween these vectors using Pearson Correlation and create a ma-
trix of correlation statistics between each frequency subband
and the reference templates. We weigh the correlation statistics
using a dot product with pre-defined weights that weigh lower
frequency bands more heavily than higher frequency bands.
This weighted correlation statistic matrix contains our features.

For classification, the system can either feed the features
into a trained K-Nearest Neighbors (KNN) model (number of
neighbors set to four) for stimuli prediction, or simply predict
stimuli based on the max correlation statistic between a set
of subbands and a reference template. For the rest of the
paper, these approaches will be referred to as FBCCAKNN
and FBCCA-max respectively.

D. Large Language Model Usage in SSVEP Interface

The figure below Illustrates the most common user flow of
our application.

Fig. 6. SSVEP Interface User Flow Diagram

1) Able-bodied user talks to BCI user using speech to text
or simply typing in a companion web app.

2) Message is sent to the interface.
3) Interface queries GPT-3 for phrase responses based on

input message from 1.
4) GPT-3 returns phrase suggestions.
5) BCI user forms response with phrase suggestions.
6) Text to speech layer reads response aloud to able-bodied

user.
For our SSVEP speller, instead of defaulting to characters,

our keys defaulted to phrase suggestions obtained using Ope-
nAI’s GPT-3 API, more specifically, the davinci model was
used for our tasks [14].

The entire SSVEP interface application, from data stream-
ing, to the pipeline, to the graphical user interface was written
in Python. This application and its web app companion can

be found on our GitHub repository [15].

III. RESULTS (PRELIMINARY)
The first set of results were found by having two subjects

navigate and type messages in our SSVEP interface in two
separate sessions, one session using the FBCCAKNN classifier
and one using the FBCCA-max classifier. It is important to
note that for each subject, the KNN in FBCCAKNN was
trained separately on the subjects data alone. The number of
total key selections and correct key selections were recorded
from each session, and classification accuracy metrics for each
session were determined from this.

TABLE I
SSVEP CLASSIFICATION PERFORMANCE

Subject Classifier Selections Correct Selections Accuracy

1 FBCCA-max 24 21 87.50%
1 FBCCAKNN 27 23 85.18%
2 FBCCA-max 36 30 83.33%
2 FBCCAKNN 31 28 90.32%

Based on the results from Table 1, it is unclear whether the
FBCCAKNN classifier performed better than the unsupervised
FBCCA-max approach, more data from more subjects would
be needed to prove a significant difference in classification
accuracy. Considering FBCCAKNN requires additional data
collection and training beforehand, it is safe to say (at least
with these early results) that FBCCA-max has a better setup
effort to accuracy ratio compared with FBCCAKNN.

The next set of results come from a conversation we had
with one subject while they used our SSVEP interface. We
spoke back and forth with the subject three times, and they
responded to each of our prompts using the phrase suggestions
on the SSVEP interface that came from GPT-3.

TABLE II
ITR PERFORMANCE FROM EXAMPLE CONVERSATION USING GPT-3

RESPONSES (FBCCA-MAX)

Response Time to respond (s) Words ITR (words/min)

1 30 17 34.00
2 35 10 17.10
3 62 15 14.50
AVG 42.67 14 21.87

Based on the results in Table 2, although preliminary, it
is still very significant that on average in this example our
system’s ITR is over two times that of the highest we could
find (10 words a minute [6]). This is very promising for the
future of wearable speech BCIs, and demonstrates that Large
Language Models can significantly improve ITR for these
systems.

IV. CONCLUSION

To conclude, our team has shown that existing methods in
EEG BCI literature along with the incorporation of LLMs
work well together, and in some contexts can dramatically
improve rate of speech communication. This ultimately brings
us one step closer to minimizing the gap between a wearable

BCI user’s rate of communication and that of an able-bodied
individual.

One of the disadvantages of our implementation however
was that it did not have any personalization. This meant that it
only took into account the prompts it was receiving in making
phrase suggestions and it did not take into account environ-
mental, personal, or relationship contexts when forming phrase
suggestions, meaning more personalized messages would still
take a lot longer to be communicated.

Although conversational context was taken into account,
future research should adopt a speech language pathology
perspective to work towards quicker and more personalized
communication. This could be achieved by implementing
an additional context engine, considering environmental and
personal context, for example, the relationship the user has
with the person they are communicating with.

REFERENCES

[1] M. T. Medina-Juliá, Á. Fernández-Rodrı́guez, F. Velasco-Álvarez, and R.
Ron-Angevin, “P300-based brain-computer interface speller: Usability
evaluation of three speller sizes by severely motor-disabled patients,”
Frontiers in Human Neuroscience, vol. 14, 2020.

[2] “Electroencephalogram (EEG),” Electroencephalogram (EEG) —
Johns Hopkins Medicine, 08-Aug-2021. [Online]. Available:
https://www.hopkinsmedicine.org/health/treatment-tests-and-
therapies/electroencephalogram-eeg. [Accessed: 12-Mar-2023].

[3] M. Li, D. He, C. Li, and S. Qi, “Brain–Computer Interface speller
based on steady-state visual evoked potential: A review focusing on
the stimulus paradigm and performance,” Brain Sciences, vol. 11, no.
4, p. 450, 2021.

[4] N. Shi, L. Wang, Y. Chen, X. Yan, C. Yang, Y. Wang, and X.
Gao, “Steady-state visual evoked potential (ssvep)-based brain–computer
interface (BCI) of Chinese speller for a patient with amyotrophic lateral
sclerosis: A case report,” Journal of Neurorestoratology, vol. 8, no. 1,
pp. 40–52, 2020.

[5] “Units Converters,” unitsconverters.com, 2016. [Online].
Available: https://www.unitsconverters.com/en/Bitpersecond-To-
Wordperminute/Unittounit-4798-7602. [Accessed: 12-Mar-2023].

[6] X. Chen, Y. Wang, S. Gao, T.-P. Jung, and X. Gao, “Filter Bank
canonical correlation analysis for implementing a high-speed SSVEP-
based brain–computer interface,” Journal of Neural Engineering, vol. 12,
no. 4, p. 046008, 2015.

[7] D. Barnard, “Average speaking rate and words per
minute,” VirtualSpeech, 08-Nov-2022. [Online]. Available:
https://virtualspeech.com/blog/average-speaking-rate-words-per-minute.
[Accessed: 12-Mar-2023].

[8] R. Kuś, A. Duszyk, P. Milanowski, M. Łabecki, M. Bierzyńska, Z.
Radzikowska, M. Michalska, J. Żygierewicz, P. Suffczyński, and J.
Durka, “On the Quantification of SSVEP Frequency Responses in
Human EEG in Realistic BCI Conditions,” PloS one, vol. 8, no. 10,
Oct. 2013.

[9] “Wireless 8-channel EEG headset,” Unicorn Hybrid Black, 12-Jan-2023.
[Online]. Available: https://www.unicorn-bi.com/. [Accessed: 12-Mar-
2023].

[10] “Ultracortex ‘Mark IV’ EEG headset,” OpenBCI Online Store. [On-
line]. Available: https://shop.openbci.com/products/ultracortex-mark-iv.
[Accessed: 12-Mar-2023].

[11] F. Lotte, L. Bougrain, and M. Clerc, “Electroencephalography (EEG)-
based brain-computer interfaces,” Wiley Encyclopedia of Electrical and
Electronics Engineering, pp. 1–20, 2015.

[12] S. O. Gilani, Y. Ilyas, and M. Jamil, “Power line noise removal from
ECG signal using notch, band stop and adaptive filters,” 2018 Inter-
national Conference on Electronics, Information, and Communication
(ICEIC), 2018.

[13] M. Nakanishi, Y. Wang, Y.-T. Wang, and T.-P. Jung, “A comparison
study of canonical correlation analysis based methods for detecting
steady-state visual evoked potentials,” PLOS ONE. [Online]. Available:
https://doi.org/10.1371

[14] OpenAI API. [Online]. Available: https://platform.openai.com/docs/models/gpt-
3. [Accessed: 12-Mar-2023].

[15] “Watolink,” GitHub. [Online]. Available:
https://github.com/WATOLINK. [Accessed: 12-Mar-2023].

Creating a Corn Yield Estimator: A Deep Learning
Approach via UAV Imagery

Sanindie Silva
Queen’s University

18asns@queensu.ca

David Courtis
Queen’s University

20dhc@queensu.ca

Jax Hodgkinson
Queen’s University

20jth7@queensu.ca

Severn Lortie
Queen’s University

severn.lortie@queensu.ca

Abstract—This project aims to develop a fast, accurate, and

cost-effective tool for yield prediction of maize plants using

computer vision models and deep learning. Two models trained

on a large dataset of UAV imagery are combined together to

detect the number of maize plants (TasselNetV2+) and detect

any unhealthy crops (CORN-DOC). The algorithm can be used

by farmers, and other stakeholders in the agriculture industry

to make informed decisions about their crops. Other features

have been incorporated into our algorithm, like the average

amount of ears of corn per stalk and the average weight per ear.

These features will be combined together into a website, where

farmers can upload images of their fields taken by UAVs and

get an estimated yield that will be calculated using distributed

computing power. Overall, this project can help to improve

farm management practices and maximize crop yields, ultimately

leading to improved food security and economic benefits for

farmers and communities.

I. INTRODUCTION

A. Motivation

The agricultural sector has long been in need of reliable
and efficient solutions for accurately counting crop yield.
Counting yield in farming is crucial as it helps farmers monitor
the growth status of their crops, make informed decisions
about crop management practices, and estimate crop yield.
Traditional manual observation is highly labour-intensive and
inefficient, while existing automated plant counting systems
are limited to controlled lab environments and specific scenar-
ios to which conditions are not transferable. However, there
has been a growing interest in developing automated plant
counting tools based on digital imagery, and many of these
tools are motivated by the success of deep convolutional neural
networks (CNNs). The emergence of deep learning-based
computer vision technology, combined with the prevalence
of digital cameras and increased computational resources, has
opened up new possibilities for practical applications of plant
counting in the field. The existing plant counting networks
have reported remarkable performances already.

Our project aims to build on the latest research in computer
vision and deep learning surrounding maize to develop a
fast and accurate plant counting application that farmers can
leverage in real time worldwide. Specifically, we are iterating
on an existing algorithm, TasselNet, which is trained on a
large dataset of UAV imagery to detect maize tassels in the
field. Maize tassels are the male part of the plant that grows
when the plant reaches maturity and is ready to be harvested.

They are thin and yellow, which helps models to recognize
tassels from the rest of the green leafy plant. The ability
to accurately count maize tassels is essential for monitoring
the growth status of maize plants, as it provides important
information about the plant’s growth stage and potential yield.
This information is critical for making informed decisions
about crop management and maximizing crop yields, which
can significantly impact food security and economic benefits
for farmers and communities

B. Related Works

In recent years, advancements in computer vision, machine
learning, and deep learning have enabled precision agriculture
to forecast crop yields accurately. This paper focuses on ex-
ploring the different techniques used to forecast crop yields. In
particular, we examine the following three studies and compare
their methodologies: ”TasselNet: counting maize tassels in the
wild via local counts regression network,” ”TasselNetV2+:
A Fast Implementation for High-Throughput Plant Counting
From High-Resolution RGB Imagery,” and ”Simultaneous
corn and soybean yield prediction from remote sensing data
using Deep TransferLearning.”

The article ”TasselNet: counting maize tassels in the wild
via local counts regression network” presents a method for
automated counting of maize tassels using images captured in
the field. The method uses a deep learning architecture called
TasselNet, which combines a convolutional neural network
with a local counts regression network. The TasselNet is
trained to detect and count the number of tassels in each
image. The authors evaluated the performance of TasselNet
on a large dataset of field images and compared it with other
methods. They found that TasselNet achieved high accuracy
and outperformed other state-of-the-art methods. This model
sets a good baseline for future models to be based on, however,
this article lacks a detailed explanation of how the TasselNet
architecture was designed or optimized, making it difficult to
reproduce or extend the method [4].

After a few iterations, the authors of the Tasselnet article
released another iteration called TasselNetV2 that built off
of the original model. The article ”TasselNetV2+: A Fast
Implementation for High-Throughput Plant Counting From
High-Resolution RGB Imagery” stated that there was an
improvement to TasselNetV2, called TasselNetV2+. Compared
to TasselNetV2, TasselNetV2+ can achieve around 30 frames

per second on images with a resolution of 1980×1080 while
retaining the same level of accuracy as TasselNetV2. Tassel-
NetV2+ can be faster than its predecessor because it focuses
on object counting, not detection. Unlike object detection,
object counting requires only dotted annotations, simplifying
the network architecture and reducing the cost of annotation
within a lightweight computational requirement. Furthermore,
while TasselNetV2 was focused on wheat counting, Tassel-
NetV2+ is trained on maize data in addition to other plants
[3]. There is another iteration called TasselNetV3, however,
the documentation was lacking and was unclear on how to
replicate the model [5].

The article ”Simultaneous corn and soybean yield prediction
from remote sensing data using Deep Transfer Learning”,
published in the journal Scientific Reports, presents a computer
vision-based algorithm to detect and count maize tassels from
high-resolution RGB imagery captured by Unmanned Aerial
Vehicles (UAVs) for high-throughput maize counting in the
field. The proposed method uses a deep convolutional neural
network and segmentation to accurately detect maize tassels
with a YieldNet model. The algorithm is optimized for real-
time performance, but it was run on a high-performance
computing cluster, which is not accessible to potential users
of the technology. Furthermore, while it can be used to
estimate maize yield in the field, the algorithm was tested on
images captured under controlled environmental conditions in
a greenhouse, but the performance may be impacted in real-
world settings where lighting and other environmental factors
are more variable [2].

In conclusion, the three studies reviewed in this paper
demonstrate the potential for deep learning-based methods to
count and forecast crop yields in agriculture accurately. Tas-
selNet and TasselNetV2 provide promising solutions for the
automated counting of maize tassels with high accuracy, and
TasselNetV2+ offers a faster and more efficient version of its
predecessor. The algorithm proposed in the third study offers
a real-time, high-throughput solution for maize counting, but
its effectiveness in more variable environmental conditions is
yet to be seen. While these studies show promising results,
there is yet to be a fast and accurate application trained on
field data that can be used right now. There are steps that can
be taken forward to ensure the practicality and applicability
of these methods in real-world agricultural settings.

C. Problem Definition

Manual plant counting, currently used in most regions of
the world, is a subjective, labour-intensive, error-prone and
inefficient task due to human error and fatigue [7]. While
attempts have been made to automate this task over the past
decades, achieving this goal has been challenging due to the
varieties of plants and intrinsic/extrinsic variations in reality.
Furthermore, automated plant counting systems developed in
the past are often limited to controlled environments or specific
scenarios [4]. In this work, we aim to provide an efficient and
effective tool for maize counting from high-resolution RGB
imagery that farmers in Kenya can use.

We intend to implement a fast, accurate and cost-effective
tool for farmers that can be easily deployed in the field.
We are leveraging a fast version of the state-of-the-art plant
counting model called TasselNetV2+, which is trained on
a large dataset of UAV imagery and uses computer vision
techniques to detect maize tassels in the images. Compared
to previous iterations TasselNetV2+ can achieve around 30
frames per second on images with a resolution of 1980×1080
while retaining the same level of accuracy. [3]. TasselNetV2+
can be faster than its predecessor because it focuses on object
counting, not detection. Other commonly used models, such
as Faster-RCNN, are even further computationally expensive,
especially for high-resolution imagery used in modern plant
phenotyping platforms [1].

Furthermore, this team plans to include other features into
our algorithm to better predict maize fields yield, like the
average amount of ears of corn per stalk and leaf health.
These features will be combined into a website, where farmers
can upload images of their fields taken by UAVs and get
an estimated yield that will be calculated using distributed
computing power. The website will enable farmers and other
stakeholders in the agriculture industry to make informed
decisions about their crops.

II. METHODOLOGY

Our project is a collaboration with Nikola Energy, a Kenyan
agriculture company that guided the creation of our yield
estimator. We started by determining which data types would
be useful for our prediction model and would have a relatively
easy collection process. We considered stationary aerial im-
ages, satellite imagery and handheld cameras, but ultimately
we concluded that drone-based imagery would be the most
reliable and efficient method for our use case. Drone imagery
or Unmanned Aerial Vehicle (UAV) imagery provides a stable
platform for image collection and offers more metadata to
determine the area of the field in the image. Compared to hand-
held cameras, drone shots are more consistent and, therefore,
easier to train a model on, while providing better visibility
than stationary aerial and satellite images. Having determined
the type of data we would use, we started examining similar
projects and models, as mentioned in the related works section,
to find suitable labelled data.

A. TasselNet

We selected an MTC-UAV dataset [5]. that was used to
train another version of TasselNet, which included 306 UAV
images from 400 maize cultivars and 70 870 manually point-
labelled instances. The images were captured from a height of
12.5 meters with a resolution of 5472 × 3648 in varying in-
field environments. Alternative datasets such as MTC [4]. and
YieldNet sets [2] were explored; however, due to the resolution
and height requirements of drone imagery, the MTC-UAV
dataset best represented our application.

The first step was using the MTC-UAV images on YieldNet
[2], Faster-RCNN [1] and TasselNetV2 [7] to determine the
model’s initial performance. The models were compared based

on their RSE and R2 scores that measured the accuracy of
the model, this gave us a consistent way to compare models
and act as a performance benchmark for accuracy and speed.
Some models that were designed for handheld or satellite
imagery had their accuracy suffer when losing information
like multispectral bands or images over several weeks. We
also tracked the computational requirements of each model,
since we wanted to ensure our final project was both cost-
efficient and lightweight. While the training process did not
need to be optimized, since it would be done rarely and on
specialized hardware, the evaluation model needed to be fast
enough to be initialized quickly or lightweight enough to be
always available.

After rebuilding the initially available models, we deter-
mined that TasselNetV2 was the fastest and most accurate
model tested. With further research, our goal was to expand on
the initial model and incorporate features of TasselNetV2+ and
TasselNetV3 to get a faster speed and higher accuracy, respec-
tively. Ultimately we successfully recreated TasselNetV2+ and
tested it on various combinations of layers and preprocessing
techniques to optimize accuracy and speed.

B. CORN-DOC

Furthermore, we were determined to incorporate a ”health
check” to identify diseased crops, so we developed a second
model that would work in conjunction with TasselNetV2+ to
create the final yield estimate. We used a dataset from OSF
[6] that contains 18,222 field images, and 105,735 annotations
for Northern Leaf Blight (NLB). NLB is a disease caused by
the fungus Setosphaeria Turcica, which is one of the most
”economically damaging maize diseases” [6]. The images
were taken from varying height levels and image quality.

The NLB dataset was used to create a convolution neural
network called ”CORN-DOC (CORN - Disease Oberserva-
tion and Counter).” CORN-DOC splits the input images into
patches of 100x100 and sends them to a simple CNN model
with fast loading of weights that predicts the confidence of
a disease in a certain patch. The model can also generate an
annotated image of the disease locations.

The TasselNetV2+ model would perform the initial estimate
of the number of maize plants, and our second model would
detect for any Northern Leaf Blight in the UAV images of the
maize crops. If any diseased crops were detected, the estimate
would be adjusted accordingly.

C. User Interface

We also incorporated user input into the estimator to pro-
vide farmers with greater flexibility in the yield calculation
algorithm. The frontend of the estimator would be designed
to be easy to use and would include buttons for further
configurations. For example, the TasselNet model can only
count the number of maize plants, and our estimator was
working with the assumption that “For every maize plant,
there would be one ear on the stalk on average,” however, we
included an input field for users to adjust the average number
of ears per stalk to better reflect their past crop yield. Similarly,

we included an input for users to adjust the average weight of
maize per plant, where the default is 340g per maize ear. The
application would provide the estimated total amount of maize
ears and the estimated weight of the total maize predicted
based on the default averages, which could also be adjusted
by user input automatically within the frontend.

D. Resources

The models discussed in this paper were trained and tested
on a GeForce RTXTM 3070 Ti graphics card. We intend
to integrate distributed computing into the final pipeline to
distribute the computing power needed for the CORN-DOC
model. Since TasselNetV2+ is a custom model, at this time,
we cannot distribute its compute, however, to overcome this
challenge, we specifically chose a lightweight and fast model
that is more portable and useable on less powerful resources.

Overall, the plan was to create a comprehensive yield esti-
mator for maize fields using UAV imagery. While we realize
that we are taking strong liberties with the yield calculation
algorithm, we have taken steps to incorporate user input and
provide flexibility in the final algorithm to better reflect a
farmer’s specific conditions. With the combination of these
models, the flexibility of the final yield algorithm and an easy-
to-use frontend, we hope to give farmers the ability to quickly
and accurately predict the yield for their fields.

III. RESULTS

With the UAV dataset, our implementation of the Tassel-
NetV2+ model showed good accuracy with R2 values of up
to 95% and MAE values of 17.3. This is a very small error for
crop counting and yield prediction and shows that our model
will absolutely be useful for counting corn tassels using UAV
images.

TABLE I
COMPARING THE ACCURACY OF THE MODELS REPRODUCED

Model MAE MSE RMAE RMSE R2

YieldNet 90.569 12,364 – – 0.086
Faster-RCNN 5.132 7.70 – 9.10 0.8727
TasselNetV2+ on MTC 5.090 9.06 – 9.00 0.8800
TasselNetv2+ on UAV 17.36 24.73 10.71 16.34 0.9578

Alongside this main counting model, our disease identifi-
cation model, CORN-DOC, has also had high accuracy with
a R2 value of 91.8% and a MSE value of 0.0239. Figure 1
shows an example performance of the CORN-DOC model.
Combining these models together gives a good estimate for
the final yield of the field and means farmers will have a fast
and accurate way of determining how their crops are doing.

TABLE II
CORN-DOC MODEL ACCURACY

Model MAE MSE RMAE RMSE R2

Disease Model 0.0609 0.0163 0.2432 0.1127 0.9517

Fig. 1. Example of CORN-DOC’s prediction on a random image.

IV. CONCLUSION

A. Ethical Dilemmas

The team identified three key ethical dilemmas during the
creation of the model. They are model transparency, accessi-
bility, and side effects. Model transparency means providing a
user with some level of insight as to how the model came to
the conclusions it did. Model accessibility means the ease with
which our target users, farmers, can deploy the AI system.
Lastly, the side effects of the model are any unintended
consequences brought about by its intended and unintended
uses.

Model transparency was a key concern. Letting users under-
stand the system’s operation will allow it to be a trustworthy
source of information. This is especially important when its
output, yield counts, is mission critical for most farmers.
To achieve this, we provided two services. The first is a
visualization of the count density map for each input image.
This gives a graphical representation of how the model sees
the image. Users can verify the operation of the model using
these. The second service is the ability to tune how the system
handles diseased corn when estimating counts. Users can edit
the model’s constants to account for diseased/unviable stocks.
Overall, these services help to address concerns of model
transparency by allowing for inspection and alteration of its
decision-making.

Model accessibility was determined to be mainly influenced
by cost and ease of use for this project. The cost would
come from the compute needed for inferencing and training.
We mitigated this by hosting the model on Distributive’s
compute platform. This platform allows for cheap compute by
distributing the work to many anonymous workers. The cost
per operation is vastly less than competitors such as Amazon
or Google. Ease of use was achieved by designing an intuitive
GUI for interaction with the system. Users can easily upload
their crop images and retrieve results without any knowledge
of AI or distributed computing required.

Unintended consequences are those which might go over-
looked during the production of the product but become
problematic when it is deployed. For this project, a large
consideration was how the target users would interpret the
results given by the model. While our counts are highly
accurate (within 95% of ground truth), they are not a complete
estimate of crop yield. Maize plants suffer from various
diseases, such as Gray Leaf Spot, Northern Corn Leaf Blight,

and southern rust. These diseases impact the quality of maize
and, in some cases, render all of it from a region of the crop
unusable. If the model did not account for disease and instead
reported just the corn count, users may incorrectly assume that
yield is better than reality. To help combat this, a secondary
disease estimation network was added to enable adjustments
for potential crop maladies. This model reduces the overall
count by an appropriate factor to compensate for NLB, a
problematic disease present in the region of deployment,
however, further efforts can be made to account for other
diseases.

B. Future Recommendations

While the team behind this project is very proud of the
work we have managed to accomplish, we realize that there
is room for improvement. As mentioned earlier, there are
more advanced models within this area of research, namely
TasselNetV3. While the model we used, TasselNetV2+, is
very accurate and useful for our purposes, it can be improved
upon, as a result, the next step would be to try to recreate
TasselNetV3 in python - due to this team’s lack of experience
and lack of clear documentation within the TasselNetV3
article, we were unable to properly implement the changes
between TasselNetV2 and TasselNetV3 into our model.

Furthermore, our estimator only monitors crops for Northern
Corn Leaf Blight, while several other diseases can impact
maize yield. Future iterations can find appropriate data and
include models that would identify other types of diseases. An-
other way to improve the yield estimator would be to include
other types of data concerning agriculture, like soil quality
or ph levels. Unfortunately, although the factors for proper
agriculture practices are well known, there is not a readily
available dataset that can be leveraged. If working in conjunc-
tion with agricultural companies/groups, future research can
work towards collecting other appropriate agricultural data to
create models from.

One of the biggest drawbacks of our estimator is that we use
approximate averages within our yield estimator’s algorithm,
which could lead to inaccurate estimates. Our solution was
to include variable values (average ears/stalk, average weight
of cob) with a default value that can be changed by user
input. However, this problem could be addressed by creating a
model based on landscape images of maize fields, counting the
number of maize on an outer row, and calculating an average
estimate of the number of ears of maize per stalk. The main
drawback to this plan would be finding a suitable dataset.
Nonetheless, these suggestions would build upon our model
to create a better tool for farmers to use to their benefit.

Future iterations can also look into the detection and spread
of NLB within fields. Due to our model’s efficiency, we can
deploy low-cost, recurring services to potential users, allowing
for consistent and rapid monitoring of crop yield and growth.
Due to the high speed and low cost, an avenue for expansion is
thereby found within the potential for early disease detection
and traceability by comparing disease detection data between
scans. Because of the high prevalence of diseases within maize

fields, it is essential to detect and prevent the spread of disease
as early as possible.

C. Closing Remarks

Overall, this project aims to address the challenges associ-
ated with manual plant counting and provide a fast, accurate,
and cost-effective tool for maize counting in the field. By lever-
aging the latest computer vision and deep learning research,
we aim to develop an algorithm that can detect and count
maize tassels in real time from high-resolution RGB imagery
captured by UAVs. This tool will enable farmers to make
informed decisions about crop management and maximize
crop yields, which can have a significant impact on food
security and economic benefits for farmers and communities.

In terms of the next steps, our team plans to further optimize
the algorithm for real-time performance using Distributed
Compute Protocol and finetuning other features integrations in
the tool that can provide more accurate yield predictions, such
as the average amount of ears of corn per stalk and leaf health.
We also plan to further develop our user-friendly website
where farmers can easily upload images of their fields and re-
ceive estimated yield calculations using distributed computing
power. Challenges that remain include addressing variations
in the field-based environment, such as illumination changes
and occlusions, and ensuring that the tool can accurately count
maize tassels across different cultivars. Nevertheless, we are
excited about this tool’s potential impact on the agricultural
sector and look forward to continuing its development.

ACKNOWLEDGEMENT

This team would like to give special thanks to Nikola
Energy and Distributed Compute Labs for their continued
support and collaboration within this project.

REFERENCES

[1] Alzadjali, A., Alali, M. H., Veeranampalayam Sivakumar, A. N., De-
ogun, J. S., Scott, S., Schnable, J. C., &; Shi, Y. (2021). Maize tassel
detection from UAV imagery using Deep Learning. Frontiers in Robotics
and AI, 8. https://doi.org/10.3389/frobt.2021.600410

[2] Khaki, S., Pham, H., &; Wang, L. (2021). Simultaneous corn and
soybean yield prediction from remote sensing data using Deep Transfer
Learning. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-
89779-z

[3] Lu, H., &; Cao, Z. (2020). TASSELNETV2+: A fast implementation
for high-throughput plant counting from high-resolution RGB imagery.
Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.541960

[4] Lu, H., Cao, Z., Xiao, Y., Zhuang, B., &; Shen, C. (2017). TasselNet:
Counting maize tassels in the wild via local counts regression network.
Plant Methods, 13(1). https://doi.org/10.1186/s13007-017-0224-0

[5] Lu, H., Liu, L., Li, Y.-N., Zhao, X.-M., Wang, X.-Q., &; Cao, Z.-G.
(2022). Tasselnetv3: Explainable plant counting with guided upsampling
and background suppression. IEEE Transactions on Geoscience and
Remote Sensing, 60, 1–15. https://doi.org/10.1109/tgrs.2021.3058962

[6] Wiesner-Hanks, T., & Brahimi, M. (2019, February 11). Image set for
deep learning: Field images of maize annotated with disease symptoms.
Retrieved from osf.io/p67rz

[7] Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., &; Shen, C.
(2019). TASSELNETV2: In-field counting of wheat spikes with
context-augmented local regression networks. Plant Methods, 15(1).
https://doi.org/10.1186/s13007-019-0537-2

APPENDIX

Fig. 2. Example of the tool’s frontend.

Improving Public Transit Systems through
Clustering and Polynomial Regression

George Trieu
Queen’s University
g.trieu@queensu.ca

Pavle Ilic
Queen’s University
20pi@queensu.ca

Cahal Ng
Queen’s University

20cn16@queensu.ca

Owen Rocchi
Queen’s University

19omr6@queensu.ca

Duncan Cheng
Queen’s University

17jc66@queensu.ca

Abstract—As urban mass transportation systems worldwide
evolve, they must adapt to the ever-changing needs of their
residents. This paper explores a machine-learning approach using
clustering and polynomial regression. This model fits trans-
portation corridors and hubs to optimize the population served
using points of interest and hot spots. Scoring of station and
line candidates is performed through a summation of Gaussian
distributions between the candidate and each point of interest.
A novel approach to generating transportation interchanges
through heuristics is also explored.

I. INTRODUCTION

As urban centre populations continue to develop into the
21st century, it is essential to design efficient and cost-effective
mass transportation. With differences in geography and rou-
tines being local to each region around the world, there is
no universal system for planning public transportation. Urban
and city planning today leverages highly advanced tools,
such as Geographic Information Systems (GIS) to develop
transit systems. Often, this process takes years to plan and
decades to execute, all while urban compositions and the
needs of the public continue to evolve. Building transit for
the future involves designing for people today and tomorrow,
not from the past. The most significant reason car usage
continues to grow in large metropolitan areas is because of
the inconvenience associated with using mass transit options
– a symptom of poor and outdated public transit planning.
This paper aims to explore different machine learning methods
to bring mass transit proposals and implementation plans to
governing bodies faster. Options such as heavy rail and light
rail are the focus of this paper.

A. Motivation

Scientists in Japan experimented with a slime mould sim-
ulating the Tokyo railway network using oat flakes and a
single-celled mould called Physarum polycephalum [1]. The
connections the mould generated mimicked the current Tokyo
transit system, a system designed by thousands of engineers.

With the vast amount of geographical data that is publicly
available, machine learning could be applied to these large
data sets to generate optimized solutions for urban planners.
An application that can give realistic solutions to rapid transit
lines in any city is the focus of this experiment. As the need
for better and more efficient transit grows around the world,
it is imperative to make use of machine learning.

Leveraging machine learning tools to design efficient urban
mass transit routes can be much more powerful than manual
planning. Human-planned public transit tends to stick to pre-
existing trends – whether that may be arterial roads, railroad
lines, or geography. Machine learning algorithms rely on a
higher dimensional feature set that is hard for humans to
perceive, resulting in far more diverse and unique ideas.

B. Related Works

There have been numerous works of literature related to
transit route planning. An example is “Improving Transit
Accessibility with Machine Learning” by Google AI Blog,
where the prediction of transit wait times utilizes real-time
traffic forecasts and data on bus routes and stops [2]. The
model is split into a sequence of timeline units per bus, with
its wait duration independently forecasted [2]. Additionally, a
guide on transit station site selection to address good practices
in the model city of Eau Claire, Wisconsin, USA helps outline
the importance of amenities and points of interest around a
station [3]. This guide supports a lot of the planning of Eau
Claire’s transit system through the analysis of other transit
systems across the United States [3].

C. Problem Definition

With the lack of automation and the use of artificial intel-
ligence in transit planning, the solution is to build a model
to design an optimized subway system for any city in the
world. This provides a tool for urban and city planners to
make informed decisions when designing and implementing a
new subway system. It will also give members of the public
an opportunity to compare any current subway system with
the most efficient and cost-effective version. The output of the
model is a system to improve the subway infrastructure of
cities, so a greater percentage of the population can be served
through transit. To ensure the designed system is convenient
for passengers, interchanges must be implemented to facilitate
a smooth and easy transition across subway lines.

Overall, the results of this experiment are measured by
an arbitrary metric that represents the number of people on
average each station serves. In particular, the City of Toronto is
used as the pilot city for this experiment. The system generated
from the model is compared to the current Toronto Transit
Commission (TTC) system to determine the effectiveness of
the model.

II. METHODOLOGY

The data sets are created through OpenStreetMap API
requests. In particular, Points of Interest (POI) like community
centres, libraries, and restaurants are found for a given city and
saved to individual CSV files to be used by the model. The
attributes are filtered to contain the latitude, longitude, and
name of each POI, with all other attributes being dropped.

A scoring function assigns coordinates a measure of useful-
ness. The scoring function is based on a Gaussian Distribution:

f(d) =
1

�
p
2⇡

e�
1
2 (

d
�)2

where d is the Haversine distance between a point and a POI,
and � is the standard deviation. The function f(d) generates
high scores for points close to the POI and generates scores
approaching zero as the distance d increases. This scoring
function is applied to a grid search function to give scores
to each grid point throughout a city when compared with the
locations of POIs. Through hyperparameter tuning, a standard
deviation of � = 0.9 is used for this experiment.

To determine the high-scoring locations throughout an urban
centre, a grid search is performed. This involves dividing the
city into an N x N grid. Each point in the grid is scored based
on the distance from itself and the locations of each POI using
the following equation:

si,j =
NX

k=0

f(d)

where si,j is the score at (i, j), N is the number of POIs, and
f(d) is the scoring function. The plot of generated grid points
for the City of Toronto is shown in Fig. 1.

Fig. 1. Scored grid points from the City of Toronto

In any mass urban transportation system, lines in a sys-
tem should be dispersed throughout the urban area, with an
additional level of concentration in the densest part (often
the downtown core). Dispersion of transit lines is achieved
through clustering. A modified k-means algorithm is used, that
considers the scores of each point xi as a weight wi in R2

space [4]:

centroid =
N⇤NX

i=0

min
µj2D

(wi ⇤ ||xi � µj ||2)

where µj is the mean of the samples in one of the clusters in
the set D. The weighted k-means algorithm converges on a
solution where cluster centres are distributed densely in high-
score areas, and more sparsely distributed in low-score areas.
This is synonymous with having more stations and lines in
downtown areas, and fewer stations and lines in the suburbs.
The clusters represent the neighbourhoods each line will go
through. This implies the number of lines in the system is
equal to the number of clusters. The clusters are numbered
at random from 0 to C - 1, where C is the number of
clusters. Sorting these clusters by average score is important
for generating interchanges. After sorting, cluster 0 has points
that make up the highest average score, cluster 1 has the next
highest, etc. The clusters for C = 6 in the City of Toronto are
shown in Fig. 2.

Fig. 2. Clustered grid points from the City of Toronto

After clustering, fitting transit lines is the next step in
developing a transit system. A plausible approach is to perform
weighted polynomial linear regression independently on each
cluster. Weighted polynomial regression is chosen due to the
use of weighted grid points. An equation for the matrix
calculation of weighted polynomial regression is shown below
where m is the degree of the polynomial and n is the number
of known data points. It is determined by creating a residual
function, summing the squares of the residual, forming a

Fig. 3. Line Progression with C = 4 in the City of Toronto

parabola, and determining the coefficients �i of the parabola
[5]:

2

6664

Pn
i=0 wi · · ·

Pn
i=0 wixm

iPn
i=0 wixi · · ·

Pn
i=0 wix

m+1
i

...
. . .

...Pn
i=0 wixm

i · · ·
Pn

i=0 wix2m
i

3

7775

2

6664

�1

�2
...

�m

3

7775
=

2

6664

Pn
i=0 wiyiPn

i=0 wixiyi
...Pn

i=0 wixm
i ⇤ yi

3

7775

Polynomial regression is used instead of linear regression
as it allows for better coverage of the grid points compared
to a straight line. A polynomial of degree 7 is used for
this experiment to maximize coverage without overfitting.
Additionally, the relationship between latitude/longitude and
score is not linear in each cluster. The points of the regression
lines are snapped onto the existing grid to simplify work with
the data in later steps.

Interchanges are an important feature in designing mass
public transit systems. By performing polynomial regression
on each cluster separately, some unintended consequences are
introduced. The resulting system of lines does not overlap
as each line is designed to optimize for its constituent grid
points (i.e. the set of constituents for each cluster is disjoint).
This implies there are no interchanges in the aforementioned
system. An iterative approach to generating lines is considered
instead. Each line is generated successively from previous lines
and utilizes information from previously generated lines. Line
generation starts from cluster 0 - the cluster with the highest
average score. Potential interchanges or interchange candidates
are identified on each line generation through

Il = argmax
i2Ll

(si)

where Il is the interchange candidate for line l, Ll is the set of
points in line l, and si is the score for the ith point on the line.
The score of the grid point associated with Il is multiplied by
a factor ↵ such that the new score s is more favourable to the
regression of the next line. The interchange candidates also
decay after each iteration. This encourages the generation of
future lines to consider other interchanges and not just the first
interchange. After each iteration, the score of each interchange
candidate is reduced by a decay factor ⇢, such that the new
score for the ith interchange candidate is si(1�⇢). This results

in the score of the ith interchange candidate after k iterations
to be

s(k)i = ↵si(1� ⇢)k

The modified grid point V (k)
i associated with each score at

each iteration s(k)i is added to the set of points for all future
lines, i.e.

8k 2 {0, ..., C � 1}, Ll+k = Ll+k [{V (k)
0 , ..., V (k)

i }

An example of this iterative line generation process for the
City of Toronto is shown in Fig. 3. The interchange candidates
are represented in the figures by a white x.

To generate stations, the Ns highest-scoring locations on a
line are found, and the distance between them is calculated.
A station is chosen if the distance between two locations
is greater than the distance parameter. The Ns value is a
parameter that can be tuned, resulting in a line having at most
Ns stations. This method does not guarantee that there will be
exactly Ns stations per line as it may not be a large enough
distance apart from other high-scoring locations.

III. RESULTS

As stated in the problem definition an arbitrary metric that
represents the number of people served on average per station
is used to compare the current transit system with the one
generated by the model.

The metric is based on iterating on all stations of each line
and averaging all the scores of the grid points that lie R radius
from the station.

sstation =

P
s2S s

||S|| , S = {si,j | i, j 2 Z,
p

i2 + j2 R}

The score of the system is simply the mean score of all the
station scores.

Fig. 4 shows the system generated by the model for the City
of Toronto, consisting of four lines.

Fig. 4. Generated System for the City of Toronto, C = 4

To ensure an accurate comparison between the model and
the current TTC system the results were calculated with C = 4
as the TTC consists of 4 subway lines. The model uses
R = 1, representing the distance customers would walk to
use a transit station. The current TTC system with 65 stations
scored 44.15 using the system scoring metric. Table I shows
the system scores generated by the model for Toronto, where
Ns represents the number of stations per line. The score
differs based on how many stations are chosen per line. A
simplification is made where each line is chosen to have the
same number of stations. The exception is cases where the
line can not support Ns stations due to its length, resulting
in fewer stations than Ns. For Ns 15, the transit system
generated from this experiment outperforms the existing TTC
system.

TABLE I
RESULTS FOR GENERATED TRANSIT SYSTEMS FOR THE CITY OF

TORONTO, C = 4

Ns Score Ns Score Ns Score

8 69.75 12 53.40 16 42.83
9 64.70 13 50.30 17 40.91

10 60.46 14 47.64 18 39.13
11 56.68 15 45.07 19 37.48

A transit system for Berlin with C = 6 is generated as
shown in Fig. 5 to demonstrate the viability of a mass transit
system in a different city on a different continent.

Fig. 5. Generated System for the City of Berlin, C = 6

IV. CONCLUSION

An optimized subway system model is created for any city
by combining a K-means clustering and polynomial regression
algorithm to be able to determine transit corridor placement
throughout a city. Polynomial regression is conducted on each
cluster, resulting in distinct transit lines. These algorithms are
used on a set of scored grid points generated using a grid
search function. A heuristic is used to connect the transit lines
together. Stations are placed in the order of highest score to
lowest score while maintaining a minimum distance from one
another. The results show that the model for this experiment
outperforms the current TTC system for Ns 15.

For future improvements, a larger data set can be used to
ensure that all high-traffic areas are considered. This also
ensures that smaller cities, such as Kingston, have more
accurate lines. An improvement to improve the defined bounds
of a city can also be considered. This ensures that lines and
stations strictly appear over areas where transit can be built.
The bounds should also take into account locations of water.

REFERENCES

[1] L. S. News Science, “Slime Mold Grows Network Just Like Tokyo Rail
System,” Wired, Jan. 22, 2010. https://www.wired.com/2010/01/slime-
mold-grows-network-just-like-tokyo-rail-system/

[2] A. Fabrikant, “Predicting Bus Delays with Machine Learning,” Google
Research, Jun. 27, 2019. https://ai.googleblog.com/2019/06/predicting-
bus-delays-with-machine.html

[3] City of Eau Claire, “Transit Centre Site Selection Study,” City
of Eau Claire, Eau Claire, Wisconsin, United States, May 2016.
Available: https://wisconsindot.gov/Documents/doing-bus/local-
gov/astnce-pgms/transit/ec-site.pdf

[4] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011,
Available: https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

[5] A. Que, “Mathematics of Polynomial Regression,” polynomialregres-
sion.drque.net, 2021. http://polynomialregression.drque.net/math.html

Quantum Convolutional Neural Networks
Chris Kingsland

Queen’s University
19cek2@queensu.ca

Abdellah Ghassel
Queen’s University

abdellah.ghassel@queensu.ca

Taylor Balsky
Queen’s University

taylor.balsky@queensu.ca

Elad Dallal
Queen’s University
20eyd@queensu.ca

Jacob Ewaniuk
Queen’s University

jacob.ewaniuk@queensu.ca

Abstract—In response to the current era of noisy intermediate-

scale quantum computing, research into near-term quantum

machine learning algorithms has expanded rapidly. Here, we

follow this movement by designing two quantum convolutional

neural networks (QCNNs) in increasing complexity, and apply

them to a multi-class image classification task to fill a void in the

field’s understanding of current non-hybrid QCNN capabilities.

The simpler QCNN architecture was suitable to run on openly-

available quantum hardware, and achieved 93% accuracy in

binary classification of MNIST handwritten digits. This improved

to 98% for a more complex, branching QCNN architecture

that provides a look at near-term improvements. Though the

accuracies decreased sharply as more classes were added to the

classification task, both QCNN architectures were able to learn

the task to varying degrees of success, always outperforming

random guessing. Altogether, these results promote the use of

QCNNs for simple machine learning tasks, and emphasize the

need for progression in physical quantum hardware to fully unveil

the potential of quantum machine learning.

I. INTRODUCTION

In 2019, Google demonstrated quantum advantage using
a programmable quantum processor of 53 superconducting
qubits [1]. More recently, IBM revealed a 127-qubit quantum
computing chip [2], cementing the notion that the era of noisy
intermediate-scale quantum (NISQ) computers is among us.
Here, we perform an analysis that contributes to the under-
standing of quantum machine learning with NISQ technology,
following a shift in focus from developing quantum computers
to using those available right now.

Many quantum machine learning algorithms feature intrinsic
noise robustness and are thus promising candidates for NISQ
computers [3]. These algorithms commonly draw inspiration
from their classical counterparts, yet are mapped to variational
quantum circuits. Classical convolutional neural networks
(CNNs) have become the most widely-used deep learning
architecture for pattern recognition in recent years, however,
they continue to require extensive computational power during
training and highly complex models to maintain accuracy [4].
To address these issues, and unveil the potential of quan-
tum feature maps, the quantum convolutional neural network
(QCNN) was proposed in Ref. [5]. While this work focused on
purely quantum applications, QCNNs can also yield benefits
when applied to classical data, particularly in computer vision
[6]. Specifically, QCNNs applied to both image processing
and recognition tasks have yielded an exponential reduction in
gate complexity while obtaining comparable levels of accuracy
with many fewer parameters [7].

A. Motivation
With the advent of the NISQ era of quantum computing,

alongside the vastly expanding research into quantum machine
learning, the development of QCNN architectures and training
procedures for relevant near-term applications is an imperative
next step. Here, we consider multi-class image classification
as an example of mapping conventional machine learning
tasks to QCNNs. Previously, both hybrid quantum-classical
CNNs [8], [9] and variational quantum classifiers [10], [11]
have been developed for such tasks involving more than two
classes, however, little research is available for purely quantum
CNNs. Separately, branching QCNNs have been proposed to
increase the parameter space for training without additional
noisy quantum resources (i.e. qubits, gates) [12], however,
these networks have only been tested for purely quantum appli-
cations. Altogether, there is a gap in our knowledge regarding
the efficacy of QCNNs, and their branching counterparts, for
multi-class image classification on NISQ hardware. Our goal
was to fill this void through the design and analysis of our
own QCNN architectures.

B. Related Works
QCNNs, and their branching counterparts, were first pro-

posed in Refs. [5] and [12] respectively, yet neither considered
applications from conventional machine learning. In contrast,
Refs. [6], [7] consider binary image classification using non-
hybrid QCNNs, while Refs. [8], [9] and [10], [11] consider
multi-class image classification using hybrid quantum-classical
CNNs and variational quantum classifiers respectively.

C. Problem Definition
As quantum computing remains an emerging field, many

of its applications are still being researched, having yet to
be validated through rigorous testing and implementation.
Consequentially, the full extent and true capabilities of QCNNs
remain unknown. The transition into the quantum world has
been propelled by exploration of hybrid models, combining
well-known classical computing algorithms with cutting-edge
quantum technology. Though these systems have been well-
developed and analyzed, complex projects executed on a
purely quantum basis are still lacking in availability. As a
result, the true capabilities of advanced algorithms, such as
branching QCNNs for conventional machine learning tasks,
remain unknown. Furthermore, previous QCNN investigations
have only considered binary classification. Evidently, there
remain many unresolved questions surrounding non-hybrid

QCNN architectures which make it difficult to understand their
potential both in the NISQ era and beyond. Here, we will
tackle some of these gaps by exploring both non-branching and
branching QCNNs for multi-class image classification, using
the MNIST handwritten digit dataset as a benchmarking tool.

II. METHODOLOGY

Our QCNN was designed initially using Qiskit in Python
such that it could be transferred to real quantum hardware once
trained. The structures of each quantum layer in the network
were first defined, then parameterized such that the QCNN
could be trained to classify images. In a quantum architecture,
such parameterization is encoded into the rotation angles of
quantum gates.

With the defined structure for each of the convolutional,
pooling, and fully-connected layers, the circuit is compiled as
a single ansatz for the learning task. This ansatz will operate
on input classical data which must be encoded into the qubit
states. In the initial, non-branching QCNN, Z feature map
encoding was applied, where each qubit is initialized to |0i
and then transformed using the Pauli-Z gate, which applies
a phase flip to the state if the corresponding data element is
non-zero, resulting in highly-entangled inputs [13], [14].

Once the QCNN is able to operate on input classical data,
it can be trained. In this implementation, we mapped certain
measured computational basis states to classifications. For
example, when classifying eight different handwritten digits
from the MNIST dataset with the measurement of three qubits,
state |0000i implies the image is classified as 1, |0001i implies
2, and so on. By comparing the predicted result to that
expected, a loss function is computed and optimized using the
COBYLA algorithm, which iteratively adjusts the parameters
throughout the network to minimize the overall loss [15].

We first applied the non-branching QCNN design to bi-
nary classification, then expanded this to multi-class, with
the results summarized in Sec. III. Given that our QCNN
implementation was designed with the NISQ era in mind, we
were able to send our trained binary classifier to real quantum
hardware provided by IBM. While concrete results were not
obtained due to limited availability, it is significant that we
were able to successfully run our model on a quantum com-
puter, providing a path to understand, in the near future, the
practical benefits and limitations of QCNNs in the NISQ era.
In the following subsections, we outline in further detail the
chosen network architecture, the methods applied to encode
MNIST images to qubit states, and the adaptations made to
construct a more complex, branching QCNN for improved
classification accuracies.

A. Network Architecture

The QCNN architecture is designed in analogy with clas-
sical CNNs, yet leverage the potential benefits provided by
quantum computing [5]. Classical filters are replaced with
quantum gates that enact unitary transformations on qubits.

With these operations, the network is able to leverage par-
allelism from quantum superposition, and strong correlations
from entanglement, when learning to classify images.

The main idea of a classical convolutional layer is to apply
parameterized sweeping filters that can be applied to the
image to create a feature map [4]. Following the design of
Ref. [16], our quantum convolutional layer is built from two-
qubit parameterized unit cells (outlined in turquoise in Fig. 1)
that are applied to each pair of neighbouring qubits.

A classical pooling layer uses the information found in the
feature map which was created by the convolutional layer and
condenses the dimensions of the image based on the results
[4]. Our quantum pooling layer ansatz was inspired from that
of Ref. [17], where parameterized quantum gates are applied
to help prepare the network to remove half of its qubits,
the source qubits, from the processing scheme. However, as
outlined in orange in Fig. 1, we simplified the architecture
to be more compatible with NISQ hardware, including just
two parameterized rotations and a controlled-NOT gate that
prepare the source qubit to be removed, and subsequently pass
the information to the sink qubit (i.e. that which remains).

The fully-connected layer of the QCNN was based upon the
hardware efficient ansatz of Ref. [18]. This circuit is designed
to optimize performance while minimizing the number of
gates and operations performed on the qubits. This layer
operates on the three sink qubits output from the pooling layer,
with a structure consisting of single-qubit rotations followed
by controlled-NOT gates. Two instances of this arrangement
constitute the entire fully-connected layer. The operations
performed on the qubits through this layer are meant to further
alter and connect their states, preparing them for measurement,
at which point the input handwritten digit is classified.

B. Data Encoding & Multi-Class Classification
Quantum embedding involves taking classical data and

converting it to quantum states in a Hilbert space [19]. Two
common approaches include basis and amplitude encoding.
Basis encoding enables us to take classical data and encode
it in a specific quantum state via single-qubit rotations. The
Z feature map encoding applied in the non-branching QCNN
is a more advanced kind of basis encoding, yet both encode
just one classical data point per qubit. In contrast, amplitude
encoding instills classical data on the amplitudes of each
quantum state in the computational basis of dimension 2n,
where n is the number of qubits. The input state can thus
be a superposition of the computational basis states, allowing
for one classical data point per state, rather than qubit. While
this is theoretically much more efficient, it may be difficult to
apply this encoding in general in the NISQ era [19].

Autoencoders are a class of unsupervised networks consist-
ing of both an encoder and a decoder. The encoder consists
of a series of dense and convolutional layers that compress
the image into a compact form, losing as little information
as possible. In our non-branching QCNN implementation,
28 ⇥ 28 MNIST images were reduced to 6 ⇥ 1 vectors to
encode in the 6 available qubits, as shown in Fig. 1. The

Rz(✓0) • Rz
�
⇡
2

�

Rz
�
�⇡2

�
• Ry (✓1) Ry (✓2) •

Ry (�0) • • Rz(�3) • •

Ry (�1) • Rz(�4) •

Ry (�2) Rz(�5)

Rz(�0) Rx(�1) •
Uconv(✓) Upool(�)

Ufc(�)

Z Feature Map
Encoding

Autoencoder

QCNN

Convolutional Layer Fully-Connected Layer

Pooling Layer

Fig. 1. Network architecture of the non-branching QCNN. An autoencoder compresses MNIST handwritten digits from 28⇥ 28 to 6⇥ 1, as necessary for Z
feature map encoding on 6 qubits. Once the inputs are encoded, the network applies a convolutional layer. This layer features a series of two-qubit unit cells,
designed as outlined in turquoise, applied to each neighbouring pair of qubits. A pooling layer is then applied between the source and sink qubits, where
for each source and sink, the two qubit unit cell outlined in orange is applied. The source qubits no longer influence the processing and are thus simply
measured. In contrast, the fully-connected layer, with corresponding circuit ansatz outlined in purple, is applied to the sink qubits. Classification results are
then interpreted from the measurement of the sink qubits.

decoder converts the compressed vector back into the original
size. With our autoencoder, a minimal loss of 0.176 was
achieved, using a series of dense layers, dropout to prevent
overfitting, and LeakyReLu as the activation layer to introduce
nonlinearity. It was optimized using a variation of the Adam
optimizer, nAdam, which leads to faster and more stable
convergence during training [20]. Further improvements can
be made by increasing the number of epochs during training
and implementing a variational autoencoder to generate new
data points and explore the dataset more effectively.

Multi-class classification is much more difficult to learn
than binary, however, it is also applicable to wider range of
problems. To explore this task, we chose specific types of
digits from the MNIST dataset during training. Specifically,
for binary classification, only images labelled as 1 and 2 were
selected, while for ternary classification, those labelled as 1,
2, and 3 were selected, and so on up to eight total classes.

C. Branching Capabilities

The idea behind branching QCNNs is to increase the
parameter space available during training without requiring
additional noisy quantum resources that may be unavailable
in the NISQ era [12] Here, we apply this idea by designing
a more advanced version of the QCNN shown in Fig. 1
that looks toward the near future of NISQ machine learning.
As displayed in Fig. 2, this branching QCNN operates on
12 qubits, features two consecutive pairs of convolutional
and pooling layers, and applies amplitude encoding, where
inputs are programmed into the probability amplitudes of each
computational basis state. With 12 qubits, the computational
basis has a dimension of 212 = 4096, thus allowing the input
MNIST images to be interpolated from 28 ⇥ 28 to 64 ⇥ 64,
rather than compressed to 6 ⇥ 1. The pooling layer design
was iterated to include gates that are controlled by the state
of the source qubit, thus mimicking the process of measuring

Uconv1(✓1) Upool1(�1)

Uconv2(✓2) Upool2(�2)
•

Ufc(�) Ufc(')

Rz(�0) Rx(�1) • •

Ry
�
⇡
2

�
Ry

�
�⇡2

�
A

m
pl

itu
de

 E
nc

od
in

g

Ignore

Result

Pooling Layer

Branching

Fig. 2. Network architecture for the branching QCNN. Via the use of amplitude encoding, input MNIST images can be encoded without an autoencoder.
Convolutional layers are applied using the same design principle as in Fig. 1. Pooling layers feature the same arrangement between source and sink qubits
(i.e. top to bottom), yet each unit cell features additional controlled-gates as outlined in orange. These layers reduce the number of qubits from 12 to 6, then 6
to 3, in preparation for the application of the fully-connected layer, which again follows the same circuit ansatz as Fig. 1. Here, however, different parameters
are passed to the fully-connected layer depending on the state of the final source qubit. Regardless, the results are still interpreted from the measurement of
the final three sink qubits.

the source and directly projecting its result to the sink.
Branching is applied at the fully-connected layer. Each

version of the fully-connected layer shown Fig. 2 follows the
same circuit ansatz, yet has its own set of parameters which
may be trained. Therefore, in hardware, the two sets of gates
outlined in purple can be realized by a single physical fully-
connected layer. It is the measurement of the final source
qubit that determines which set of parameters (� or ') to
apply. Given that the circuit ansatz for the fully-connected
layer features 6 parameters, the addition of this branching
capability alone provides the QCNN with 6 more parameters
to train without any further physical resources.

III. RESULTS

We trained both our non-branching and branching QCNN
designs in simulation to perform multi-class image classifi-
cation of MNIST handwritten digits on varying numbers of
classes. The maximum recorded classification accuracies, on
training sets of 100 images, are displayed in Fig. 3, alongside
the accuracy that would be expected by randomly guessing
the class of a given input. It is evident that both the non-
branching and branching QCNNs were able to achieve higher
classification accuracies than random guessing and thus both
learned how to classify the data.

For binary classification, the non-branching QCNN achieved
93% accuracy, which improved to 98% for the branching ar-
chitecture. However, the accuracies sharply decreased for both
architectures as the number of classes increased. Specifically,
when classifying digits 1-8, the non-branching and branch-
ing QCNNs achieved 20% and 26% accuracies respectively.

Therefore, while the amplitude encoding, increased numbers
of qubits and layers, and branching capabilities yielded im-
provements in accuracy as expected, these design changes
were not sufficient to fully enable high-accuracy multi-class

2 3 4 5 6 7 8

Number of Classes

0

20

40

60

80

100

C
la

ss
ifi

ca
ti
on

A
cc

ur
ac

y
[%

] Non-Branching QCNN

Branching QCNN

Random Guessing

Fig. 3. Accuracies in classifying MNIST handwritten digits with a non-
branching QCNN (turquoise stars), its branching couterpart (purple circles),
and by randomly guessing (orange circles), for increasing numbers of classes
(i.e. types of digits 1-8). Each of the QCNN results show the maximum
recorded accuracy on the training dataset, where each contained 100 images.
The dotted lines serve only as a visual aid.

image classification. A significant increase in quantum re-
sources is thus likely required to compete with both conven-
tional machine learning approaches and hybrid architectures.

IV. CONCLUSION

In conclusion, we designed and trained two QCNN ar-
chitectures in increasing complexity, and benchmarked their
performance for multi-class image classification using the
MNIST handwritten digit dataset. Our results work to fill a
void in the understanding of using purely quantum CNNs
for conventional machine learning tasks. Specifically, we
discovered that QCNNs readily available in the NISQ era
of quantum computing can achieve high-accuracy (� 93%)
binary image classification, and were even able to demonstrate
this availability by running our trained architecture on physical
quantum hardware. These results emphasize the promise of
quantum machine learning, even in the NISQ era, and promote
the need for further research into improved algorithms as well
as encoding and training procedures.

When expanding to higher numbers of classes, however, we
found that QCNNs require more than just amplitude encoding
and branching capabilities to improve their performance. Addi-
tional quantum resources are required to achieve high-accuracy
classification. Even with 12 qubits, and 5 total layers, as in
our implementation of the branching QCNN, simulating these
networks on classical computers is a daunting task. Therefore,
it is up to the field to continue improving and scaling actual
quantum computers. It is only with the development of large-
scale fault-tolerant quantum computing that the true potential
of QCNNs, and quantum machine learning in general, will be
unleashed.

REFERENCES

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff,
K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho,
M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov,
F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh, S. Mandrà,
J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu,
E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan,
N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D.
Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh,
A. Zalcman, H. Neven, and J. M. Martinis, “Quantum supremacy using
a programmable superconducting processor,” Nature, vol. 574, pp. 505–
510, October 2019.

[2] P. Ball, “First quantum computer to pack 100 qubits enters crowded
race,” Nature, vol. 599, November 2021.

[3] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial
networks,” Phys. Rev. A, vol. 98, p. 012324, July 2018.

[4] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai, and T. Chen, “Recent advances in con-
volutional neural networks,” Pattern Recognition, vol. 77, pp. 354–377,
May 2018.

[5] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neural
networks,” Nature Physics, vol. 15, pp. 1273–1278, August 2019.

[6] V. Rajesh, U. P. Naik, and Mohana, “Quantum convolutional neural
networks (qcnn) using deep learning for computer vision applications,”
in 2021 International Conference on Recent Trends on Electronics,
Information, Communication & Technology (RTEICT), pp. 728–734,
October 2021.

[7] S. Wei, Y. Chen, Z. Zhou, and G. Long, “A quantum convolutional
neural network on nisq devices,” AAPPS Bulletin, vol. 32, p. 2, January
2022.

[8] D. Bokhan, A. S. Mastiukova, A. S. Boev, D. N. Trubnikov, and A. K.
Fedorov, “Multiclass classification using quantum convolutional neural
networks with hybrid quantum-classical learning,” Frontiers in Physics,
vol. 10, November 2022.

[9] A. Chalumuri, R. Kune, and B. S. Manoj, “A hybrid classical-quantum
approach for multi-class classification,” Quantum Information Process-
ing, vol. 20, p. 119, March 2021.

[10] M. Lazzarin, D. E. Galli, and E. Prati, “Multi-class quantum classifiers
with tensor network circuits for quantum phase recognition,” Physics
Letters A, vol. 434, p. 128056, May 2022.

[11] Y. Du, Y. Yang, D. Tao, and M.-H. Hsieh, “Demystify problem-
dependent power of quantum neural networks on multi-class classifi-
cation.” arXiv, December 2022.

[12] I. MacCormack, C. Delaney, A. Galda, N. Aggarwal, and P. Narang,
“Branching quantum convolutional neural networks,” Phys. Rev. Res.,
vol. 4, p. 013117, February 2022.

[13] J. Qin, “Review of ansatz designing techniques for variational quantum
algorithms.” arXiv, December 2022.

[14] M. M. Hossain, M. S. Ali, R. A. Swarna, M. M. Hasan, N. Habib,
M. W. Rahman, M. M. Azad, and M. M. Rahman, “Analyzing the effect
of feature mapping techniques along with the circuit depth in quantum
supervised learning by utilizing quantum support vector machine,” in
2021 24th International Conference on Computer and Information
Technology (ICCIT), pp. 1–5, December 2021.

[15] Y. Huang, H. Lei, and X. Li, “An empirical study of optimizers for
quantum machine learning,” in 2020 IEEE 6th International Conference
on Computer and Communications (ICCC), pp. 1560–1566, December
2020.

[16] F. Vatan and C. Williams, “Optimal quantum circuits for general two-
qubit gates,” Phys. Rev. A, vol. 69, p. 032315, March 2004.

[17] T. Hur, L. Kim, and D. K. Park, “Quantum convolutional neural network
for classical data classification.” arXiv, February 2022.

[18] O. Kyriienko, A. E. Paine, and V. E. Elfving, “Solving nonlinear
differential equations with differentiable quantum circuits,” Phys. Rev.
A, vol. 103, p. 052416, May 2021.

[19] M. Schuld and N. Killoran, “Quantum machine learning in feature
hilbert spaces,” Phys. Rev. Lett., vol. 122, p. 040504, February 2019.

[20] T. Dozat, “Incorporating nesterov momentum into adam.” OpenReview,
February 2016.

Monte Carlo Tree Search and Reinforcement
Learning for a Four Player, Simultaneous Move

Game
Finn Archinuk

University of Victoria
finn.archinuk@gmail.com

Dana Bell
University of Victoria

danabell841@gmail.com

Leo McKee-Reid
University of Victoria
leo.tzu.mr@gmail.com

Eric Showers
University of Victoria
ejshowers@gmail.com

Nathan Woloshyn
University of Victoria

nathanwoloshyn@gmail.com

Abstract—This work introduces a variant of Monte Carlo Tree

Search (MCTS) for the game BattleSnake, a 4 player adversarial

grid-based game with simultaneous turns. The solution we pro-

pose solves the problem of node selection in MCTS by having each

player select a subset of nodes to explore instead of deterministi-

cally selecting a node, which is how traditional MCTS works. Our

implementation allows an MCTS-based Reinforcement Learning

model to iteratively improve against previous generations and

benchmark models.

I. INTRODUCTION

The study of game-playing AI is as old as computer science
itself. Turing, Shannon and Von Neumann were all fascinated
by the prospect of algorithms which could play games such as
chess at a human (or superhuman) level. For many years, chess
was a grand challenge for AI researchers, which culminated in
the historic victory of Deep Blue over Gary Kasparov. But this
victory can be attributed to sophisticated search algorithms and
advanced hardware, not machine learning. Systems like Deep
Blue are highly tuned to their domain, and rely heavily on the
domain expertise of their programmers.

The ambition of much of modern AI research is to instead
create general, blank slate systems that can learn a strong pol-
icy from first principles. Recently there have been impressive
results from the application of Reinforcement Learning (RL)
from self-play using tree search as a guide [Sil+17b]. Games
such as Chess, Go, and Shogi ([Sil+17a] have superhuman
quality agents. An important feature is that these games are
between two opponents making sequential moves, so the
traversal into new states is clearly defined. Similarly, for single
player games the agent acts at each layer of the tree instead
of alternating with the opponent.

Developing algorithms to solve these single player tasks
can lead to real-world applications; a high profile example
is AlphaTensor, where the researchers found an agent that
generates a series of operations to more efficiently multiply
matrices [Faw+22].

In this paper we develop a variant of tree search to train a
Reinforcement Learning (RL) agent in the popular program-
ming competition BattleSnake. We implement this algorithm
and demonstrate the iterative improvements of the learned
policy.

A. BattleSnake
BattleSnake is a turn based, simultaneous action, strategy

game/programming competition inspired by the classic Snake
arcade game. The BattleSnake environment is designed as a
starting point for programming projects. Each of four players
controls a “snake” with code that selects their move in one
of four cardinal directions. The 11x11 board state is updated
synchronously. During play a snake can consume food to
extend its body length by one and refill a slowly decreasing
health bar. A snake dies when it collides with a wall, has not
eaten for 100 turns, or collides with a body segment of itself
or another snake. If two or more snakes have a head-to-head
collision, the largest snake survives.

Fig. 1. A frame of BattleSnake with four agents on an 11x11 board.

In an official competition setting a player receives a data
structure containing the current board state from the server
hosting the match and has 500ms to respond with their
selected action (failing to respond in time results in your snake

repeating it’s previous move). The time limit constrains the
amount of look ahead that can be done using tree search
algorithms, such as minimax. Previous algorithms that have
proven to be successful are flood-fill (an algorithm that finds
connected positions) and A* (an algorithm that efficiently
moves to a target).

The theoretical complexity of BattleSnake is high in terms
of branching factor, which is the number of possible state tran-
sitions from any given state. However, this can be significantly
pruned in practice. If all agents are alive, each one has four
possible moves. Additionally, one item of food may or may
not spawn randomly on any empty tile each turn. This gives
us about 44 ⇤ (121 + 1) = 31232 potential transitions. But
we can ignore most of them by assuming that snakes will
avoid moves that make them lose instantly (such as hitting
their own neck or a wall), and that food spawns are irrelevant
for search purposes. This reduces the search space to a much
more manageable 34 = 81 at most, and often even less (for
example, when some agents are dead or have only one viable
move). It is worth noting however that even this curtailed space
is often still significantly higher than that of chess (⇡ 35), and
that the time control is much stricter than is usually the case
in chess.

These constraints make this an interesting problem for RL;
multiple agents, synchronous moves, and a high branching fac-
tor make exhaustive tree search computationally impossible.
The complexity is further increased by the stochastic addition
of food at random locations at random intervals, and some tree
search methods are unable to handle randomness.

B. Problem Definition

The implementation of MCTS from AlphaZero is not im-
mediately capable of handling BattleSnake due to multiple
agents jointly defining a state transition. Variants of MCTS for
multiple agents have been proposed before, and will be further
outlined in section I-C. Our proposed solution recognizes that
the quality of a move of a snake will depend on the moves
of other snakes, and that each snake selects a reduced set of
states that benefits them the most. During a real game (i.e.,
not for training), once each snake has made a selection, the
intersection of the sets of states is reduced to one, which is the
transition to the new state. However, when exploring the game
tree with MCTS for training purposes, choosing a set of moves
to transition to the next game state is far more complicated.

Creating an expert agent in BattleSnake is an important
problem to solve, as many problems in the physical world
can be thought of as multi-agent, simultaneous action games
(either zero sum like BattleSnake, or with elements of co-
operation), such as traffic on a road or mobile robots in a
warehouse.

The goal of MCTS-based RL is to train a neural network
(NN) to approximate the resulting MCTS tree. This paper
outlines and implements a variation of MCTS that is applicable
for multiple agents with simultaneous moves that is appropri-
ate for BattleSnake.

C. Related Works

With the recent renaissance in deep learning, there have
been many new ways of applying RL to problems such as
computer Go, which have branching factors that limit the
effectiveness of traditional tree search algorithms, such as
minimax. Deep Blue’s defeat of Kasparov in 1997 showed
that sufficient amounts of compute applied in clever ways
can surpass the strategic planning abilities of the strongest
human players, but it used inflexible domain specific systems.
AlphaZero, however, uses a general framework, using a deep
convolutional network to approximate the move probabilities
of a Monte Carlo search at each position.

Tak et al [TLW14] proposed Simultaneous Move Monte
Carlo Tree Search (SM-MCTS) for a variety of two player
games. They evaluate multiple formulations of the problem
including as Decoupled Upper Confidence Bounds for Trees,
Exp3, Regret Matching, and Sequential Upper Confidence
Bounds for Trees. Their goals differ from what we are propos-
ing in that we intend to approximate the resulting tree with a
NN for iterative improvements.

Lanctot et al [Lan+13] applied MCTS to Tron, a game that
resembles BattleSnake in some aspects. In this game, players
move simultaneously and win by surviving longer than their
single opponent while avoiding the walls they leave behind on
the board. They used two implementations of MCTS: one that
models the game sequentially during tree traversal but plays
Monte Carlo simulations simultaneously, and another that uses
SM-MCTS. They experimented with different algorithms for
growing the tree for SM-MCTS, such as DUCT, Exp3 and
Regret Matching. Decoupled UCT (DUCT) selects moves
sequentially but hides the other agent’s choice until both agents
have chosen, simulating simultaneous play. Exp3 samples
moves from a probability distribution based on their expected
reward. Regret Matching generates a policy by comparing the
regret values of moves. Our work is most similar to Exp3, but
we differ in using a learned policy (for both tree construction
and simulations) with a neural network.

There was a previous effort by a UVic team to apply the
AlphaZero architecture to BattleSnake, but they eschewed the
use of MCTS in favor of a pure value-based RL approach,
citing issues with mustering the necessary compute for an
MCTS based training pipeline [Sid+20]. In the domain of
BattleSnake, current SOTA methods are heavily reliant on
alpha-beta search methods with clever heuristics to maximize
the amount of look-ahead that can be done in the 500ms
response window.

II. METHODOLOGY

A. Coordinate System

The data structure provided at each turn comes in the form
of a dictionary. We have represented the information in the
dictionary as a series of layers, with 3 layers per snake (head
location, body segment locations, and health) and a food layer.
This results in an (11,11,13) array for a 4-player game on the
standard (11,11) game board.

The number of board states can be reduced by a factor of 4
by converting this array into a relative coordinate system. This
is inspired by [Sid+20] and is done by padding the board state
to a 2n � 1 square grid (where n is the width of the board),
translating the head of the selected snake to the center, and
rotating so that the snake faces up. Padding the board increases
the dimensionality of the board, but the complexity of the task
is reduced since “nearby” obstacles are always towards the
center of the board. Rotating the board reduces a snake’s action
space from the 4 cardinal directions into 3 relative directions
(L=left, F=forward, R=right) since a downwards move will
always collide with it’s neck. To ensure the snake doesn’t run
off the board, we also add a channel indicating which locations
are walls, so the final board dimensionality is (21,21,14).

B. Traditional MCTS
Monte Carlo Tree Search was introduced in [Abr86] to solve

the problem of creating trees for an intractable problem. The
challenge with other tree methods are that the number of nodes
of the tree may expand beyond what memory can handle.
The MCTS method iteratively builds a tree using simulations
from leaves to estimate the quality of the state. While the
MCTS method does not create a “true” tree, it will converge
to the optimal tree as more samples are taken. Furthermore, by
selecting the promising moves instead of an exhaustive search
of the tree, the algorithm indirectly incorporates pruning.

Algorithm 1 Traditional MCTS
while within time limit do

currentNode rootNode
while currentNode 2 searchTree do

lastNode currentNode
currentNode SELECT(currentNode)

end while

lastNode EXPAND(lastNode)
Reward SIMULATION(lastNode)
while currentNode 2 searchTree do

currentNode.BACKPROPAGATE(Reward)
currenNode.visitCount currentNode.visitCount+1
currentNode currentNode.parent

end while

end while

MCTS can be broken down into 4 phases: selection, ex-
pansion, simulation, and backpropagation. Given the current
tree, a node is selected that balances exploitation of previous
rewards and exploration of interesting states. Selection is
continued until the algorithm finds a leaf. The leaf is expanded
to include all possible children. One of those children has
a simulation run to approximate the quality of that state.
Finally, the quality of the state is sent back up the tree through
backpropagation. The MCTS algorithm is more thoroughly
outlined in [Bro+12] and [Świ+22].

The primary challenge of implementing MCTS for Bat-
tleSnake is the selection phase, which we discuss in greater
detail in the following section. The specific challenge is in

selecting a node that greedily satisfies all 4 agents while
also exploring the game tree for very good moves which are
difficult to find.

C. Multiagent Simultaneous MCTS

With Multi-Agent MCTS [ZY19] and Simultaneous Move
MCTS [Lan+13] having both been developed, we propose a
combination of the two in order to effectively learn simul-
taneous multi agent environments: Multi-Agent Simultaneous
MCTS (MAS-MCTS). The algorithm supports any number of
agents simultaneously selecting moves.

Fig. 2. Transitions from a parent to a child are in the form of a 4 element
action.

In the case of BattleSnake, we support 4 agents selecting
one of up to 3 moves each turn, which collectively define
an action and state transition. Therefore our maximum non-
trivial branching factor from any state is: # moves# agents =
34 = 81. Agents select a move by considering what state
transitions could possibly result from that move, which is
the set of all possible actions where that agent chose that
move. For example, for an agent to consider moving left
they would consider the set of state transitions where they
move left, and every other agent can make any of their valid
moves. In the simple case of two agents, this would be the set
{(L,L), (L,F), (L,R)}, where our agent moves left and the
other agent may move left, forward or right. Figure 2 shows
possible state transitions for BattleSnake. The arrows indicate
state transitions as a combination of moves of the snakes. If
a snake chooses to move left, there are 27 possible resulting
states due to the moves of the opponents.

The selection of which child node to visit is collectively de-
cided by the agents using a combination of exploitation—how
likely an agent is to win from that node—and exploration—a
measure of how novel the node is. The exploitation component
is defined in equation 1 as the total reward collected from
travelling to that node (Wa) divided by the number of visits
to that node (Na), repeated for each agent. This results in
a reward summarization of the set of moves for each snake.
The reward summarization is mapped to the 81 child nodes by

iterating over all permutations. This value is then normalized
to sum to one. Note that in the following equations, a is an
action, where an action is defined as a combination of all the
agents moves. Actions therefore represent the edge from a
node to a child node in the game tree.

Qa =
Wa

Na
(1)

The exploration component, U , is defined in equation 2.
The exploration coefficient (c) multiplies the NN probability
of selecting a given action, P (s, a), which is the product of
the probability that the NN assigns to that move for each snake
(equation 3). We therefore call the NN, f✓(s), at every state
when calculating the exploration component. For example,
given the NN probability of each move for each snake at state
s in Table I, if some action a = [L, L, R, F], then P (s, a) =
m1,1 * m2,1 * m3,3 * m4,2

TABLE I
NN OUTPUTS USED FOR CALCULATING P (s, a)

Alive Snakes Move Left Move Forward Move Right

f✓(s) for Snake1 m1,1 m1,2 m1,3

f✓(s) for Snake2 m2,1 m2,2 m2,3

f✓(s) for Snake3 m3,1 m3,2 m3,3

f✓(s) for Snake4 m4,1 m4,2 m4,3

In this table, mi,j is the probability that the NN assigns to
the ith snake to move in the jth direction

The remainder of equation 2 biases exploration of under-
visited nodes by dividing the number of visits of the children
(
P81

b N(s, b)) by the number of all visits from that state (1+
N(s, a)).

Ua = cP (s, a)

qP81
b N(s, b)

1 +N(s, a)
(2)

P (s, a) =
Y

i

Pr(f✓(s) = ai)

8i such that snakei is currently alive
(3)

The selection of the node to visit is done by finding the
maximum Action Value VA = Q + U . As with traditional
MCTS, if the selected node has child nodes, this process is
repeated. If the selected node does not yet have children, the
node is expanded, and the Action Value of the child nodes are
calculated.

At the end of each MCTS loop for a given state, the selected
action to advance one turn in the real game is calculated by
taking a probability distribution of ⇡ 4. ⇡ is a 4x3 array, where
each element is proportional to how often a given snake made
a certain move during MCTS. This selection method makes
sense, since the number of visits to a node during MCTS,
Na, is determined by both the exploitation and exploration
components.

⇡i,j =
X

a:ai=j

NaP
b Nb

(4)

The following algorithm 2 describes the repeated process
of generating data and training the NN via self-play.

Algorithm 2 MCTS Training Loop
Generate initial set of training games using trivial policy
while NN improving do

while Games played < 200 do . Generate data
Initialize new game with 4 identical NN agents
while Game is not over do

Use MCTS and the NN to calculate the best next
move probability for all agents, ⇡

Save current game state and associated ⇡
Move all agents 1 turn as a probability

distribution of ⇡
end while

end while

Train new NN on generated games
Ensure new NN out-performs previous NN
NN new NN

end while

III. RESULTS

A. Initial Training Data

To generate the initial training data, 200 games were played
using MCTS simulations at each state to calculate how each
snake would move. For the first set of games, we use a trivial
agent that was classically coded to avoid immediately moving
into obstacles, but had no other planning routine. For this
initial set of games, each turn was simulated 2000 times with
a maximum depth of 10 steps or until only one snake remains,
whichever comes first. The intention here is to provide high
quality training data for the first NN. These games resulted in
approximately 270,000 samples for training.

B. Training

The NN is a simple convolutional neural network (CNN)
with two convolutional layers (16 filters, 3x3 kernel, ReLU
activation), followed by two fully connected layers with 256
neurons each and ReLU activation. There are then 3 output
neurons with a softmax activation. This model was trained
for 100 epochs with a batch size of 1024. The optimizer was
AdamW [LH17] with a learning rate of 5e-5 and weight decay
of 5e-5. The output of the NN is a 3 element probability
distribution determined by the MCTS summary, so we selected
Kullback-Leibler Divergence (KLD) as the loss function.

C. Training Loop

Once the NN was trained on the initial games, it becomes an
approximation of MCTS. The next set of games were trained
using the fixed weights of the NN. Each turn of these games
were simulated only 1000 times, since the planning of the NN
could produce higher quality exploration than a random policy.
This training loop is outlined in Algorithm 2.

Training the NN requires converting the board state into a
relative coordinate frame and reducing the predicted loss using
the MCTS generated tree summarization as the ground truth.

D. Architecture Modification
The most recent NN update includes an adjustment to

the architecture and a preprocessing step to the inputs. The
architecture has an additional fully connected layer of 256
neurons with a ReLU activation. The health of snakes were
reduced by a factor of 100. Finally, the snake bodies have
an inherent order to them (from neck down to tail) which
the network can access. The previous training data had these
body segments clipped to either zero or one, indicating either
the absence or presence of a body obstacle, respectively. This
alternative architecture and preprocessing was selected due to a
significant decrease in validation loss observed during training.

E. Evaluation
Here we evaluate the quality of the learned policy with

special attention paid to improvements between iterations.
The evaluation metric we use is the percentage of wins
against three opponents. Since BattleSnake has four agents,
our learned policy is expected to win 25% of the time if it is
performing at a similar level. This is an imperfect metric since
snake behaviours may be non-transitive, with snakes winning
more or less frequently depending on the behaviours of their
similarly matched opponents. As a first approximation, and
to demonstrate a trend in improvement, win percentage is
sufficient.

At the time of writing we have three iterations of the NN
policy. For each of the three iterations we are testing against
two types of opponents: a Trivial snake that is only able to
avoid immediately adjacent obstacles, and a Flood Fill snake.
The Flood Fill snake works by moving to the best non-obstacle
position according to a heuristic which calculates the best-case
longest-path possible from each available position.

Each iteration plays 500 times against three of the opponents
of the given type. Table II shows the learned policy is able
to regularly win against 3 Trivial opponents. This table also
shows that although it has a low win percentage against the
more complex Flood Fill snake, the win percentage increases
with each training iteration.

TABLE II
WIN PERCENTAGE VS 3 OPPONENTS

Policy vs Trivial vs Flood

Iter. 1 53.4% 2.8%
Iter. 2 62.4% 4.0%
Iter. 3 76.6% 6.8%

To ensure the snakes are improving relative to their previous
generation, we also test all three iterations together, with the
fourth spot filled with either the Trivial Snake or the Flood
Filling snake. The results of this test are summarized in Table
III. These values may not sum to 100% due to draws. Again,
500 games were played to limit the influence of random
chance.

TABLE III
WIN PERCENTAGE VS VARIED OPPONENT

Game Policy Wins

1 Trivial 4.4%
1 Iter. 1 15.8%
1 Iter. 2 23.2%
1 Iter. 3 54.2%
2 Flood 66.6%
2 Iter. 1 5.2%
2 Iter. 2 8.6%
2 Iter. 3 18.8%

These results indicate that not only is each training iteration
improving the model, but the improvements from Iter. 2 to
Iter. 3 are greater than from Iter. 1 to Iter. 2. Based on these
initial results, it is reasonable to anticipate that the model will
continue to improve with additional training.

IV. CONCLUSION

In this work we have outlined a variant of Monte Carlo
Tree Search for multiple adversarial agents in a sychronous
environment. We have shown this algorithm can be used
for training a neural network as introduced by AlphaZero
[Sil+17b] in an iterative process, and that later iterations of
the model outperform prior iterations.

V. FUTURE WORK

While the MCTS-based RL method we have developed is
generating good initial results, this project will undergo a num-
ber of changes in the coming weeks to improve performance.
In addition to experimenting with different NN architectures,
hyperparameter tuning, and increasing our depth of MCTS
simulation, we will also be updating our training pipeline, as
described in the following algorithm.

Algorithm 3 Improved MCTS Training Loop
Generate initial set of training games using trivial policy
while NN improving do

while Games played < 500 do . Generate data
Initialize new game
while Game is not over do

Use MCTS and the NN to calculate the best next
move probability for all agents, ⇡

Save current game state and associated ⇡
Move all snakes 1 turn as a probability

distribution of ⇡
end while

end while

Train 3 new NNs on generated games
Play 100 4-player evaluation games between the 3 new

NNs and the previous NN
NN the NN which won the most test games

end while

Aside from increasing the number of generated training
games for each model iteration, the difference between this
algorithm and the currently implemented pipeline (Algorithm

2) is the idea of training multiple NNs each iteration, then
selecting the best by running evaluation games. Generating
games is the most computationally expensive step in this
pipeline, so better utilizing the generated games may decrease
the number of training iterations needed to achieve an equiv-
alent skill level.

Finally, we will experiment with different rewards during
MCTS simulations. Our current model is only rewarded for
survival (with less reward if opponents are also alive). Giving
explicit reward for eliminating opponents, finding food, or
ending games quickly may significantly affect training. Since
BattleSnake is an incredibly complex and stochastic game,
there may be different playing styles that correlated with
different peaks of optimal play, and reward engineering may
be the key to unlocking certain styles of play.

REFERENCES

[Abr86] Bruce Abramson. “Thesis Proposal: The
Expected-Outcome Model of Two-Player
Games”. In: 1986.

[Bro+12] Cameron Browne et al. “A Survey of Monte Carlo
Tree Search Methods”. In: IEEE Transactions on
Computational Intelligence and AI in Games 4
(2012), pp. 1–43.

[Lan+13] Marc Lanctot et al. “Monte Carlo Tree Search for
Simultaneous Move Games: A Case Study in the
Game of Tron”. In: 2013.

[TLW14] Mandy J. W. Tak, Marc Lanctot, and Mark H. M.
Winands. “Monte Carlo Tree Search variants for
simultaneous move games”. In: 2014 IEEE Con-
ference on Computational Intelligence and Games
(2014), pp. 1–8.

[LH17] Ilya Loshchilov and Frank Hutter. Decoupled
Weight Decay Regularization. 2017. DOI: 10 .
48550 /ARXIV.1711 .05101. URL: https : / / arxiv.
org/abs/1711.05101.

[Sil+17a] David Silver et al. Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning
Algorithm. 2017. DOI: 10 . 48550 / ARXIV. 1712 .
01815. URL: https://arxiv.org/abs/1712.01815.

[Sil+17b] David Silver et al. “Mastering the game of
Go without human knowledge”. In: Nature 550
(2017), pp. 354–359.

[ZY19] Nicholas Zerbel and Logan Michael Yliniemi.
“Multiagent Monte Carlo Tree Search”. In: Adap-
tive Agents and Multi-Agent Systems. 2019.

[Sid+20] Ahmed Siddiqui et al. “Multiagent Reinforcement
Learning in a Synchronous Strategy Game”. In:
(2020). URL: https : / / github . com / Fool - Yang /
AlphaSnake-Zero/blob/master/report.pdf.

[Faw+22] Alhussein Fawzi et al. “Discovering faster ma-
trix multiplication algorithms with reinforcement
learning”. In: Nature 610 (2022), pp. 47–53.

[Świ+22] Maciej Świechowski et al. “Monte Carlo Tree
Search: a review of recent modifications and ap-
plications”. In: Artificial Intelligence Review 56.3
(2022), pp. 2497–2562. DOI: 10 . 1007 / s10462 -
022-10228-y.

https://doi.org/10.48550/ARXIV.1711.05101
https://doi.org/10.48550/ARXIV.1711.05101
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.48550/ARXIV.1712.01815
https://doi.org/10.48550/ARXIV.1712.01815
https://arxiv.org/abs/1712.01815
https://github.com/Fool-Yang/AlphaSnake-Zero/blob/master/report.pdf
https://github.com/Fool-Yang/AlphaSnake-Zero/blob/master/report.pdf
https://doi.org/10.1007/s10462-022-10228-y
https://doi.org/10.1007/s10462-022-10228-y

AGORA: a Language Model for Safe Speech-to-Text
Conversion

Victor Cruz
McGill University

victor.cruz@mail.mcgill.ca

Laurence Liang
McGill University

laurence.liang@mail.mcgill.ca

Abstract—Large language models are trained on immense data

sets. This can let some unpleasant language be available for the

end user of the language model. With the rise of the proliferation

of close captioning software, it becomes increasingly important to

ensure the correct interpretation and safe transcription of speech

during different events which are required to be safe for everyone.

We use GPT-3 to evaluate and rewrite harmful text sequences into

harmless ones using zero-shot learning. Using zero-shot learning,

we find that GPT-3 can identify and paraphrase text with harmful

language. As a result, we introduce the Automated Generation

and Omission Recurrent Architecture (AGORA) as one of the first

models of its kind to work in conjunction with the new speech

recognition model Whisper to provide speech-to-text transcription

with built-in offensive content filtration and rephrasing.

I. INTRODUCTION

Text-to-speech models have been notorious for misinterpret-
ing certain words from people with disabilities [1] during
different use cases. Furthermore, it is quite important to
maintain a safe environment for cases where children are
interacting with a model like this [2]. This can become a
problem when a user is trying to convey information to other
people but their audio is not working well.

A. Motivation

It is quite important to have reliable speech software to
interpret what was said, amid growing use cases of video
conferencing and streaming. [3], [4] This can help millions of
people learn English and other languages and interact with the
internet in a safe and guided way.

B. Related Works

1) Speech Recognition: Speech recognition is the process
of transcribing words in an audio recording into text. Recent
advances in neural networks have attracted considerable interest
in developing end-to-end (E2E) models that involve LSTM
or Transformer architectures. [5] In particular, one such
state-of-the-art model is Whisper, which was developed by
OpenAI, whose performances rival those of human actors
when transcribing speech to text [6].

2) Zero-shot Prompting with Large Language Models: Zero-
shot prompting is an emerging approach to identifying offensive
text, which involves assigning a model to a task that it has never
seen before. While zero-shot prompting may force a model to
draw conclusions based on limited prior knowledge, zero-shot
prompting with large language models can be an effective

approach to identifying offensive text. Because offensive text
can (i) have implicit meanings, (ii) is not specific to certain
keywords and (iii) can be interpreted differently from one
group to another, it becomes difficult to develop keyword-
based models that perform well amid these observations. [7] As
large language models are designed differently than keyword-
based models, zero-shot learning, for instance with GPT-3, for
toxic language detection yields promising results, and few-shot
learning can also increase model performance. [8]

3) Text Detoxification: Large language models such as
BART and GPT-3 are able to generate high-quality text that can
become nearly indistinguishable from human-generated content.
[9], [10] However, it becomes important to also investigate
methods to ensure that generated text is detoxified. [11] Past
research includes developing autoencoder models to mask and
rewrite harmful content or fine-tuning large language models
(in the case of InstructGPT). [12], [13]

II. METHODOLOGY

A. Overall Architecture

We introduce our speech-to-text model, AGORA (Automated
Generation and Omission Recurrent Architecture), which
transcribes an audio recording into a non-offensive word
statement. (Figure 1) AGORA has three components: (i) the
speech-to-text component, (ii) the zero-shot offensive language
detection component, and (iii) the paraphrasing component.

When AGORA receives an audio recording, it will first
transcribe the speech into a transcript using the (i) speech-to-
text component, which attempts to transcribe the exact same
words in the audio recording.

Next, the (ii) offensive language detection component will
assess whether the current text contains any offensive language.
If this (ii) component detects no offensive content, the current
text transcription will be the final output. If this (ii) component
detects offensive content, it will then send the current text to
the (iii) paraphrasing component.

The (iii) paraphrasing component will reword the current
text while attempting to keep the text’s underlying meaning.
The (iii) paraphrasing component will then send the reworded
text to the (ii) offensive language detection component. As long
as the reworded text contains offensive language (as detected
by component (ii)), AGORA will iteratively process the text
statement in a recurrent manner until no more offensive content
is detected. However, to avoid infinite loops where AGORA is

Fig. 1. Overall Architecture of AGORA

unable to adequately reword the subsequent text, AGORA will
output the processed text after a maximum of 10 iterations.

B. Speech-to-Text Functionality

The speech-to-text component is built on OpenAI’s Whisper,
a general-purpose automatic speech recognition model. We
selected Whisper due to the size of its training database
(680,000 hours of multilingual and multitask samples) and
its performance which is close to human-level accuracy. (On
the Kincaid46 dataset, Whisper’s word error rate (WER) was
8.81%, while the WER for human transcription ranged between
8.14% and 10.5%.) [6]

C. Zero-Shot Offensive Language Detection

To identify whether the current text contains offensive
language, the offensive language detection component prompts
OpenAI’s GPT-3 davinci-003 model with the following instruc-
tions:

Does the following text prompt contain one or several
of toxic, severe toxic, obscene, threat, insult or
identity hate: {insert text here}

The program then processes GPT-3’s output which specifies
which of the six attributes are present in the current text.

TABLE I
MULTI-LABEL CLASSIFICATION ON A SUBSET OF THE JIGSAW DATASET

LABEL PRECISION RECALL F1-SCORE

TOXIC 1.00 0.05 0.10
SEVERE TOXIC 0.03 0.67 0.05
OBSCENE 1.00 0.36 0.53
THREAT 0.17 0.50 0.25
INSULT 0.55 0.50 0.52
IDENTITY HATE 1.00 0.33 0.50

MICRO AVG 0.15 0.29 0.20
MACRO AVG 0.62 0.40 0.32
WEIGHTED AVG 0.80 0.29 0.32
SAMPLES AVG 0.04 0.02 0.03

TABLE II
MULTI-LABEL CONFUSION MATRIX ON A SUBSET OF THE JIGSAW DATASET

LABEL TN FP FN TP

TOXIC 180 0 19 1
SEVERE TOXIC 121 76 1 2
OBSCENE 189 0 7 4
THREAT 193 5 1 1
INSULT 183 5 6 6
IDENTITY HATE 197 0 2 1

AGORA uses the same six attributes (toxic, severe toxic,
obscene, threat, insult, identity hate) that were specified in the
Jigsaw ”Toxic Comment Classification Challenge” in order for
AGORA to properly benchmark its model performance. [14]
Thus, by design, AGORA can simultaneously identify different
labels for a given text (an instance of multi-label classification),
as a text can be both obscene and a threat at the same time.

As no prior training or reference prompt is provided to
GPT-3, this component’s task is zero-shot in nature.

The temperature parameter is set to 0.5.

D. Paraphrasing the Initial Text Prompt

Similar to the offensive language detection component (as
highlighted in subsection 3.3), the paraphrasing component
prompts OpenAI’s GPT-3 davinci-003 with the following
instructions:

Paraphrase the following phrase in a non-offensive
way: {insert text here}

This is also a zero-shot task, as AGORA does not provide
GPT-3 with any prior training or reference examples.

Similarly, the temperature parameter is set to 0.5.

E. Dataset

We used the ”Toxic Comment Classification Challenge”
dataset from Jigsaw (on Kaggle) to assess AGORA’s ability
to detect offensive language. Due to GPT-3 rate limitations,
we processed this database’s first 200 samples in its training
file (159,571 training samples in total). [14] We also sampled
10 audio clips from two movies (Whiplash and The Wolf of

TABLE III
ATTRIBUTE-BLIND BINARY CLASSIFICATION OF A SUBSET OF THE JIGSAW

DATASET (N=200)

ATTRIBUTE PRECISION RECALL F1-SCORE

NON-OFFENSIVE 0.95 0.59 0.72
OFFENSIVE 0.17 0.71 0.27

ACCURACY 0.60
MACRO AVG 0.56 0.65 0.50
WEIGHTED AVG 0.86 0.60 0.68

Wall Street, where 5 samples were taken from each movie) to
assess AGORA’s ability to transcribe speech to text, and to
subsequently paraphrase the initial text into a non-offensive
statement. The audio samples were between 5 to 30 seconds
in duration.

F. Evaluation Metrics

We define two respective sets of metrics for the offensive
language detection component’s accuracy and for the overall
model’s performance.

1) Metrics for the Zero-Shot Offensive Language Detection:

We consider the precision, recall and f1-score to evaluate
the multi-label nature of the ”Toxic Comment Classification
Challenge” database, as multiple attributes can simultaneously
exist. (For example, a statement can be both obscene and an
insult at the same time.) We also use confusion matrices for
each attribute to visualize false positive and false negative
occurrences specific to each attribute.

Additionally, we consider these same metrics (precision,
recall and f1-score) to evaluate whether AGORA can detect
offensive content (any of the six attributes from the Jigsaw
dataset), regardless of the specific attribute type. In other words,
we evaluate whether AGORA can detect offensive content,
even if AGORA fails to correctly classify the type of offensive
content in the six aforementioned categories. Consequently, we
define this type of task as an attribute-blind binary classification.

2) Metrics for the Overall Architecture: We then evaluate
AGORA’s end-to-end performance (solely based on the audio
input and the final text output) by asking the following two
questions

1) Is the initial meaning conserved in the final text output?
2) Is the final text output offensive?
We evaluate AGORA on ten audio samples with offensive

content from two movies (as specified in section 3.5).

G. Implementation

AGORA is implemented as a Python class, to promote ease
of use across different operating systems and use cases.

III. RESULTS

1) Zero-Shot Offensive Language Detection: At first glance,
we notice that AGORA’s zero-shot offensive language detection
has macro averages of 0.62 for precision, 0.4 for recall, and

TABLE IV
CONFUSION MATRIX OF THE ATTRIBUTE-BLIND BINARY CLASSIFICATION

(N=200)

LABEL TN FP FN TP

FREQUENCY 105 74 6 15

TABLE V
AGORA’S END-TO-END PERFORMANCE AS DEFINED BY A HUMAN

OBSERVER (N=10)

CRITERIA ACCURACY

IS THE INITIAL MEANING CONSERVED? 0.6
IS THE FINAL OUTPUT NON-OFFENSIVE? 0.8

0.32 for the f1-score. (Table I) In particular, when analyzing the
f1-score, AGORA is best at identifying obscene content (0.53),
insults (0.52) and identity hate (0.50). AGORA has the most
difficulty with identifying toxic (0.10) and severe toxic (0.05)
content, as AGORA has a tendency of missing ”toxic”-labeled
statements (recall of 0.05) while falsely attributing ”severe
toxic”-labeled statements (precision of 0.03). (Tables I, II).

However, in an attribute-blind setting where AGORA only
needs to identify whether a statement contains offensive content,
AGORA’s overall accuracy reaches 60%. (Table III) We also
note that AGORA tends to label false positives (74) at a much
higher rate than false negatives (6). (Table IV) These results
suggest that GPT-3 davinci-003 falsely identifies benign text
as offensive content (precision of 0.17), though GPT-3 misses
offensive content at a much smaller rate (precision of 0.95). The
overall accuracy of 60% is comparable to the 56% accuracy for
zero-shot learning and the 55% accuracy for one-shot learning
in a similar task as reported by [8] when using GPT-3.

2) Speech-to-Text Offensive Content Filtration: As specified
in Table V, when evaluated by a human observer, AGORA
has a (i) 60% accuracy in conserving the initial meaning of
the audio input in the final text output, and reaches an (ii)
80% accuracy in generating a non-offensive final text output.
We observe that errors from (i) conserving the initial meaning
of the audio file originate in the speech-to-text transcription,
paraphrasing the text to the point that it loses its original intent,
or a combination of both. (Figure 2) While AGORA filters
out explicit profanity such as swear words, AGORA has (ii)
difficulty identifying and removing implicit terms, such as
sarcasm or passive agressive statements. (Figure 3)

3) Limitations: Due to GPT-3’s rate limitations per pricing
tier, only the first 200 samples from the Jigsaw dataset were
analyzed in this paper. While these results were able to provide
a preview of the performance of GPT-3-based architectures,
a more comprehensive study of the entire Jigsaw dataset and
other additional toxic language datasets would be required to
provide a broader and more representative picture in regard
to the performance of large language models for paraphrasing
toxic text.

Fig. 2. Wolf of Wall Street excerpt where AGORA has erroneously transcribed
”John” instead of ”Jordan”, and ”it” instead of ”him”. While the final output
is non-offensive in nature, the initial meaning is not fully conserved.

Fig. 3. Whiplash excerpt where AGORA has difficulty recognizing sarcastic
intent.

As offensive content can be subjective in nature, having mul-
tiple human members in a jury would yield more representative
results when assessing AGORA’s end-to-end performance.

Furthermore, fine-tuning GPT-3 and experimenting with one-
shot or few-shot learning are additional approaches that should
be investigated.

IV. CONCLUSION

1) Limitations: Due to GPT-3’s rate limitations per pricing
tier, only the first 200 samples from the Jigsaw dataset were
analyzed in this paper. While these results were able to provide
a preview of the performance of GPT-3-based architectures,
a more comprehensive study of the entire Jigsaw dataset and
other additional toxic language datasets would be required to
provide a broader and more representative picture in regard

to the performance of large language models for paraphrasing
toxic text.

As offensive content can be subjective in nature, having mul-
tiple human members in a jury would yield more representative
results when assessing AGORA’s end-to-end performance.

Furthermore, fine-tuning GPT-3 and experimenting with one-
shot or few-shot learning are additional approaches that should
be investigated.

2) Final Thoughts: We introduced AGORA, a new speech-
to-text model that can filter out offensive content by recursively
paraphrasing it. In particular, the comprehensive speech-to-
text architecture provides an integrated approach for near-real-
time speech-to-text captioning. One-shot and few-shot-learning,
expanding the dataset sample size, and fine-tuning language
models are future aspects to investigate, in order to provide a
more comprehensive overview of jointly using speech-to-text
and large language models to filter offensive content.

REFERENCES

[1] J. T. Garrett, K. W. Heller, L. P. Fowler, P. A. Alberto, L. D. Fredrick,
and C. M. O’Rourke, “Using speech recognition software to increase
writing fluency for individuals with physical disabilities,” Journal of

Special Education Technology, vol. 26, no. 1, pp. 25–41, 2011. [Online].
Available: https://doi.org/10.1177/016264341102600104

[2] S. Lovato and A. M. Piper, “”siri, is this you?”: Understanding
young children’s interactions with voice input systems,” in Proceedings

of the 14th International Conference on Interaction Design and

Children, ser. IDC ’15. New York, NY, USA: Association
for Computing Machinery, 2015, p. 335–338. [Online]. Available:
https://doi.org/10.1145/2771839.2771910

[3] “Video conferencing market value worldwide in 2021
and 2026,” https://www.statista.com/statistics/1293045/
video-conferencing-market-value-worldwide/, accessed: 2022-12-
28.

[4] “Video streaming (svod) - worldwide,” https://www.statista.com/outlook/
dmo/digital-media/video-on-demand/video-streaming-svod/worldwide,
accessed: 2022-12-28.

[5] J. Li, “Recent advances in end-to-end automatic speech recognition,”
2022.

[6] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey,
and I. Sutskever, “Robust speech recognition via large-scale weak
supervision,” 2022. [Online]. Available: https://arxiv.org/abs/2212.04356

[7] Y.-S. Wang and Y. Chang, “Toxicity detection with generative
prompt-based inference,” 2022. [Online]. Available: https://arxiv.org/abs/
2205.12390

[8] K.-L. Chiu, A. Collins, and R. Alexander, “Detecting hate speech with
gpt-3,” 2021. [Online]. Available: https://arxiv.org/abs/2103.12407

[9] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed,
O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising
sequence-to-sequence pre-training for natural language generation,
translation, and comprehension,” 2019. [Online]. Available: https:
//arxiv.org/abs/1910.13461

[10] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[11] C. Xu, Z. He, Z. He, and J. McAuley, “Leashing the inner demons:
Self-detoxification for language models,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.03072

[12] S. Hallinan, A. Liu, Y. Choi, and M. Sap, “Detoxifying text with marco:
Controllable revision with experts and anti-experts,” 2022. [Online].
Available: https://arxiv.org/abs/2212.10543

https://doi.org/10.1177/016264341102600104
https://doi.org/10.1145/2771839.2771910
https://www.statista.com/statistics/1293045/video-conferencing-market-value-worldwide/
https://www.statista.com/statistics/1293045/video-conferencing-market-value-worldwide/
https://www.statista.com/outlook/dmo/digital-media/video-on-demand/video-streaming-svod/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-on-demand/video-streaming-svod/worldwide
https://arxiv.org/abs/2212.04356
https://arxiv.org/abs/2205.12390
https://arxiv.org/abs/2205.12390
https://arxiv.org/abs/2103.12407
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2203.03072
https://arxiv.org/abs/2212.10543

[13] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright,
P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman,
J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder,
P. Christiano, J. Leike, and R. Lowe, “Training language models to
follow instructions with human feedback,” 2022. [Online]. Available:
https://arxiv.org/abs/2203.02155

[14] e. a. cjadams, “Toxic comment classification chal-
lenge,” 2017. [Online]. Available: https://kaggle.com/competitions/
jigsaw-toxic-comment-classification-challenge

https://arxiv.org/abs/2203.02155
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge
https://kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge

Anomaly Detection for Purefacts Financial
Solutions

Sebastian Wakefield
Queen’s Univeristy

19sslw@queensu.ca

Connor Rewa
Queen’s University

20car8@queensu.ca

Abstract—The paper presents a methodology for anomaly de-
tection in financial data, aimed at detecting anomalies in fee cal-
culations in PureFacts Financial Solutions’ wealth management
solutions. The study employs unsupervised learning approaches,
as the data provided was not classified as anomalous/non-
anomalous. The authors describe the relevant data parameters
used for analysis, including AssignedBPSRate, CurrentGroup-
Value, StartTier, EndTier, FeeScheduleAssignID, and FeeTypeID.
They also discuss the challenges faced in detecting anomalies and
present their approach, which involves clustering the data using
DBSCAN and then using Davies-Bouldin and Silhouette values to
check the optimal epsilon value. The study’s results show that the
proposed approach successfully detected anomalies in the data,
which could save the institution from millions of dollars in fines,
regulation costs, and compliance issues.

I. INTRODUCTION

This work focuses on the development of an anomaly
detection system for PureFacts Financial Solutions, a com-
pany that provides wealth management and asset solutions
on an international scale. The accurate calculation of fees
charged to clients is crucial for the company to avoid legal
or regulatory implications. The paper proposes a system that
utilizes unsupervised machine learning approaches such as
DBSCAN and K-means to detect anomalies in data records.
The paper also discusses algorithmic methods that can be
used in conjunction with machine learning models to discover
outliers. The results of the proposed approach are promising,
and future work will involve further optimization of the system
to handle larger datasets. Unfortunately, some of our results
cannot be publicized due to an NDA with PureFacts.

A. Motivation

Detecting outliers in data is a large problem that has
been studied for many years [1]. Numerous methods have
been developed and tested for detecting anomalous points
in data sets, as the use of inaccurate data can have critical
repercussions [1]. Our client, PureFacts Financial Solutions,
provides enterprise wealth management and asset solutions
on an international scale. They provide their clients with
transformational WealthTech solutions to future-proof their
business and accelerate growth by leveraging their expertise in
wealth management solutions. Removing anomalous data from
PureFacts’ data records is imperative to ensure that correct
fees are charged to their clients. Incorrect values in PureFacts’

records can result in detrimental legal or regulatory implica-
tions. Our client needs a reliable system to flag anomalous
data for technicians to further review and remove.

B. Related Works
Anomaly detection is a well-studied problem in the field of

machine learning, and various methods have been developed to
tackle it. One popular approach is to use clustering algorithms
to identify data points that are significantly different from
others. For example, the k-means algorithm has been used to
detect anomalies in time series data [2], while density-based
clustering algorithms such as DBSCAN have been used for
anomaly detection in network traffic data [3].

Other methods for anomaly detection include using decision
trees [4], support vector machines (SVMs) [5], and neural
networks [6]. These methods can be effective, but they can
also be computationally expensive and difficult to interpret.

One challenge that remains in the field of anomaly detec-
tion is dealing with imbalanced datasets. In many real-world
scenarios, anomalous data points may be rare compared to
normal data points. This can make it difficult to train machine
learning models to accurately detect anomalies. One solution
to this problem is to use techniques such as oversampling,
undersampling, or data augmentation to balance the dataset
[7].

Another challenge is to deal with concept drift, which
occurs when the distribution of data changes over time. In
the context of anomaly detection, this can result in previously
normal data points becoming anomalous, or vice versa. To
address this challenge, researchers have proposed methods
such as online learning and ensemble methods [8].

C. Problem Definition
PureFacts has access to numerous data points that will be

used to calculate the fee that the advisor will charge their
investors. If the fee charged is incorrectly calculated, the
advisor and the financial firm will be liable, and there might
be financial penalties. This anomaly detection system aims
to automatically detect errors in fee calculations and produce
an alarm system to send push notifications to the advisor
for an ongoing fee calculation error. This will help advisors
detect errors in advance, saving the institution millions in
fines, regulation costs, and compliance issues. Since the fee
errors don’t happen often, we need to use algorithms that can

detect subtle changes in the data, which are called anomalies
or outliers.

The specific anomalies we are detecting are fee schedule
anomalies. This anomaly occurs when the fee has been as-
signed incorrectly, in which case the advisor has mistyped the
fee value incorrectly.

II. METHODOLOGY

To begin creating a solution, a deep understanding of
PureFacts’ business model must be made. To make connec-
tions in any data received, it must be known how these
parameters relate to each other in order to build a model
around it. The data was given in multiple files, consisting of
hundreds of thousands of data rows. As the data points given
are not classified as anomalous/non-anomalous, we must use
unsupervised learning approaches. Let us introduce the data
parameters that are relevant to the analysis:

• AssignedBPSRate: The rate that PureFacts charges a
client for advising.

• CurrentGroupValue: Numerical value representing the
size of PureFacts’ client’s account.

• StartTier: This relates to the starting range of account
size.

• EndTier: This relates to the ending range of account size.

• FeeScheduleAssignID: Represents the group of fee sched-
ules that the row resides in.

• FeeTypeID: Represents the type of fee group within the
group of fee schedules.

• FeeGroupID: This parameter marks data rows that belong
to the same fee group.

• Min/MaxBPSRate: The minimum or maximum As-
signedBPSRate that the client can be charged.

As instructed by our client, it was chosen to use the
AssignedBPSRate and CurrentGroupValue to build a model, as
these are directly related. As clients’ account size increases,
the rate they are charged is expected to decrease. The As-
signedBPSRate determines how much PureFact’s clients are
billed, so it is imperative that this parameter is not anomalous.

A. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applica-
tions with Noise) is a density-based clustering machine learn-
ing model which is great at detecting outliers in an unsu-
pervised manner. This model takes two parameters; an eps
(epsilon) value, representing the maximum distance between
any two points in the same cluster, and a min samples
value, representing the minimum number of data points in

a cluster. The data columns we fed into our model are
those most relevant to the AssignedBPSRate calculation, such
as CurrentGroupValue, FeeScheduleAssignID, and FeeTypeID.
These data columns help compare the AssignedBPSRate and
CurrentGroupValue within FeeScheduleAssignID subgroups to
check for outliers.

To determine the optimal eps value within the DBSCAN
model, we used metrics from the Silhouette Coefficient (SC)
and Davies Bouldin Index (DBI). The SC measures how well
each data point fits into its assigned cluster, by comparing its
distance to other data points within its own cluster vs. those in
neighboring clusters. A higher score indicates better clustering.
The DBI measures the average similarity between each cluster
and its most similar cluster, while also taking into account the
distance between their centroids. A lower value indicates better
clustering. Therefore, we chose an epsilon with the highest SC
and the lowest DBI.

Since this is an unsupervised machine learning problem, we
found it difficult to evaluate our results, as there was initially
no clear guideline on what should be flagged as an anomaly.

B. K-Means

K-means Clustering is an iterative approach that fits data
into a chosen number of clusters. To begin, k data points are
chosen at random to represent initial cluster centroids, where
all data points are assigned to their nearst ”cluster”. The new
centroid is then calculated by taking the mean value of all
data points in the cluster. Data points are then re-assigned
to their closest centroid, and this process is repeated until
the centroids no longer move a significant amount. When the
algorithm converges, all data points are held in clusters that
have similarities among them. To choose a number of clusters,
the elbow method is used to find the required number before
running the K-means algorithm.

Fig. 1. Elbow method for the dataset.

For the elbow method, the Within-Cluster Sum of Square
(wcss) is calculated for a range of cluster amounts. When
the curve begins to flatten, the number of optimal clusters is
extracted. In Figure 1, this number of clusters is 5, which
is then passed into the K-Means algorithm. This model is
primarily used to visualise data and get a deeper understanding
of parameter relations.

C. Algorithmic Methods

There are two additional ways to identify anomalies without
using machine learning models. These algorithmic approaches
in this section are used in conjunction with our DBSCAN and
K-Means models to discover outliers.

First, anomalies can be identified by comparing the As-
signedBPSRate value to the MaxBPSRate and MinBPSRate
values. If the AssignedBPSRate is outside the MaxBPSRate
and MinBPSRate range, then it can be easily flagged as
anomalous.

Second, the StartTier and EndTier values can give us a
window into outliers in the data. If the tiers are increasing,
the AssignedBPSRate should be decreasing, as the charge for
advisors should lower as the value tiers get higher for each fee
schedule. Thus, by sorting all rows in a fee schedule group
by the StartTier and EndTier values, we can easily see if the
AssignedBPSRate is increasing. If so, then we can flag all rows
in that fee schedule group as anomalous.

III. RESULTS

The results we attained from our DBSCAN approach, are
shown in Figure 2 below. We identified an anomaly frequency
within the guidelines from our client but must limit further
details due to NDA.

Fig. 2. Results from the DBSCAN model.

Our Algorithmic approaches also identified anomalies, but
only a very small percentage of the total anomalous data.

Analysis was also done using the K-Means algorithm, again
using CurrentGroupValue to find outliers in the AssignedBP-
SRate. The data was grouped into 5 clusters, determined by
the elbow method. The results obtained are shown in Figure
3 below.

Fig. 3. Results from the K-Means model.

Figure 3 shows 5 clusters stacked on top of each other.
This approach showed further insight into how the Current-
GroupValue and AssignedBPSRate data related to one another.
Anomaly detection algorithms using K-Means were explored,
however, did not show acceptable accuracy. This model pro-
vided a better understanding on how the data was laid out,
and propelled us toward finding better approaches of outlier
detection.

IV. CONCLUSION

In conclusion, the anomaly detection system developed for
PureFacts Financial Solutions has been successful in detecting
anomalies in data records. Our DBSCAN approach identified
a realistic number of rows as anomalous, which closely
aligns with the guidelines given by our client. Additionally,
our algorithmic approaches provided an additional layer of
anomaly detection to the system.

Moving forward, it would be important to continue to
optimize the system and ensure that all anomalous data is
caught. This may involve tweaking the parameters of the
DBSCAN and K-Means models to improve accuracy. Addi-
tionally, further analysis could be done to identify new types
of anomalies and develop methods to detect them.

Another challenge that remains is the scalability of the
system. As PureFacts continues to grow and gather more data,
the system will need to be able to handle larger and larger
datasets. This may require further optimization and potentially
the implementation of new technologies.

Overall, the development of this anomaly detection system
is a crucial step in ensuring the accuracy of PureFacts’
data records and preventing detrimental legal or regulatory
implications. Continued work in this area will help to further
improve the system and ensure that PureFacts can continue to
provide transformational WealthTech solutions to their clients.

REFERENCES

[1] A. B. Nassif, M. A. Talib, Q. Nasir and F. M. Dakalbab, ”Machine
Learning for Anomaly Detection: A Systematic Review,” in IEEE
Access, vol. 9, pp. 78658-78700, 2021.

[2] Y. Li, L. Li, and X. Li, “Anomaly detection in time series data using
k-means clustering,” IEEE Access, vol. 7, pp. 173 389–173 400, 2019.

[3] J. Ren, Y. Zhang, L. Zhang, and J. Yang, “Anomaly detection in network
traffic based on DBSCAN clustering algorithm,” in Proceedings of the
IEEE 6th International Conference on Cloud Computing and Intelligence
Systems, pp. 1207–1211, IEEE, 2018.

[4] M. R. Gholami, R. E. Atani, and S. M. S. Sadough, “Anomaly detection
using decision trees: A survey,” Journal of King Saud University-
Computer and Information Sciences, vol. 30, no. 4, pp. 431–448, 2018.

[5] L. Chen, X. Cao, and W. Wang, “Anomaly detection of time series
data based on support vector machine,” in Proceedings of the IEEE 2nd
International Conference on Big Data Analysis, pp. 72–77, IEEE, 2018.

[6] S. S. Suresh and V. K. Govindan, “Anomaly detection using neural
networks – A comprehensive review,” Expert Systems with Applications,
vol. 120, pp. 144–173, 2019.

[7] B. G. Martins, V. L. R. M. Souza, and A. L. F. de Almeida, “Dealing
with imbalanced datasets: An overview,” in Proceedings of the IEEE 5th
International Conference on Data Science and Advanced Analytics, pp.
1–10, IEEE, 2018.

[8] S. Li, S. Li, Y. Li, and C. Li, “Concept drift detection for online anomaly
detection: A review,” IEEE Access, vol. 7, pp. 34 940–34 950, 2019.

Applying Machine Learning to Bipolar Disorder
Categorization Using the Motor Activity Dataset

Rabab Azeem
Queen’s University

azeem.rabab@gmail.com

Julien Pierre Chanel
Queen’s University

19jpc@queensu.ca

Jingjing Mao
Queen’s University

18jm69@queensu.ca

Aria Maz
Queen’s University

aria.maz@queensu.ca

Naser AI-Obeidat
Queen’s University

21nao3@queensu.ca

Abstract—Bipolar disorder, especially bipolar II disorder, is

known to have a high suicide and self-harm rate, and a high

misdiagnosis rate. This project is an attempt to identify patients

with bipolar II disorder among a group of healthy controls and

patients with major depressive disorder. We use the motor activity

data collected by the motion-sensitive sensor at Haukeland Uni-

versity Hospital, Bergen, Norway. We discuss the preprocessing

methods performed and a potential method of feature extraction.

We applied a convolutional neural network and a long short-

term memory network and the accuracy was 63.48% and 75.77%

respectively. Finally, we discussed future directions and suggested

methods of improving the accuracy.

I. INTRODUCTION

Beyond the surface of one of the most prevalent mental
illnesses lies a harsh reality. Over the past 2 decades, bipolar
disorder has resulted in self-harm among 30-40% of patients
and led to the suicide of 6% [7]. There are 3 main categories
of bipolar disorder, although sometimes their types can blend
[5]:

• Bipolar I disorder: is defined by manic episodes that last
for at least 7 days (nearly every day for most of the day)
or by manic symptoms that are so severe that the person
needs immediate medical care [5].

• Bipolar II disorder: is defined by a pattern of depres-
sive episodes and hypomanic episodes. The hypomanic
episodes are less severe than the manic episodes in
bipolar I disorder [5].

• Cyclothymia: (also called cyclothymia) is defined by
recurring hypomanic and depressive symptoms that are
not intense enough or do not last long enough to qualify
as hypomanic or depressive episodes [5].

Despite its significant consequences and risk, bipolar dis-
order is commonly known as being hard to be diagnosed.
Specifically, Bipolar type II, which has a less severe manic
episode, can be mistaken as unipolar depression. Compared to
depression and anxiety, the literature about applying machine
learning to bipolar disorder diagnosis is rather limited. A
literature review paper [4] of bipolar disorder diagnosis and
machine learning suggests that bipolar disorder detection is
a rapidly improving area of research, even though before
2021 there were only 2 publications from Canada that talked
about machine learning and bipolar disorder diagnosis. Among
all machine learning techniques applied to bipolar disorder
research, the most used were classification models and regres-
sion models. Due to the effect of bipolar disorder on daily

activities, previous work has been done on applying machine
learning algorithms to the motor activity dataset collected from
around 50 patients over several days [1]. Further improvements
in models and machine learning algorithms were achieved
and machine learning has been proven promising in bipolar
disorder diagnosis [6] [3]. This project aimed to address the
misdiagnosis of Bipolar type II and major depressive disorder.
Therefore, we focused on the classification of healthy controls,
bipolar II disorder and major depressive disorder.

II. METHODOLOGY

A. Introduce the dataset

The proposed data set is the Depresjon dataset [1] which
consists of motor activity recordings of 23 unipolar and bipo-
lar depressed patients and 32 healthy controls at Haukeland
University Hospital, Bergen, Norway [1]. The activity level
was recorded with an actigraph watch worn that can detect
movements over 0.05g at the patient’s wrist. The sampling
frequency of the actigraph watch is 32Hz, and the output
activity level is saved every minute.

The paper associated with the Depresjon dataset used ma-
chine learning to classify patients into depressed and non-
depressed. Consisting of two folders, the dataset contained
data for the control and condition groups. Each patient had a
designated csv file containing timestamped data (in minutes) of
physical activity, date of measurement, and activity measure-
ments collected from their actigraph watch. Additionally, vital
patient-specific data were included such as afftype (bipolar
II, unipolar depressive, bipolar I), melanch (melancholia, no
melancholia), gender, age groups, education levels, marriage
status, and MADRS scores at the start and end of the measure-
ment period. MADRS scores are a rating scale widely used
and validated tool for measuring the severity of depressive
symptoms in individuals [2].

B. Data preprocessing

There are mainly three steps to clean the data. The only
demographic features available for healthy controls are gender
and age, meaning if we want to include healthy controls in
the training dataset, we need to drop all the demographic
columns except for age and gender. Secondly, we transformed
the raw dataset. For the activity recordings of each patient,
we extract the recording of each day, and attach the demo-
graphic information of the corresponding patient after the daily

recording. Therefore, each row of the output dataset is the
24hr recording of a patient with the patient’s demographic
info attached. During our preprocessing, we also realized that
some healthy controls forgot to wear their actigraph watch
after several days of recording. Therefore, we dropped days
with too many identical data points.

Our analysis aimed to establish the correlation between
physical activity and mental health using both statistical
learning and deep learning techniques. To achieve this, we
leveraged the vast collection of motor activity signals that
were timestamped every minute for a large number of patients.
However, due to the sheer volume and complexity of the
data, accurate model building necessitated feature selection.
Therefore, we plan to apply a feature selection process to
identify the most relevant features in the motor activity record-
ings, which could assist in generating accurate MADRS scores
and diagnoses. To simplify the data for machine learning
algorithms, we transformed the daily numerical motion data
into categorical labels consisting of 0, 1, 2, or 3. The labels
were determined based on the average motion within 10-
minute intervals. A label of 0 indicates that the averaged
motion was 1 standard deviation below the daily average, and
the non-zero values of the original motion data within the 10-
minute interval were less than 40%. A label of 1 indicates that
the averaged motion was 1 standard deviation below the daily
average, but the non-zero values of the original motion data
within the 10-minute interval were more than 40%. A label of
3 indicates that the averaged motion was 1 standard deviation
above the daily average. A label of 2 is used for all other
cases. By categorizing the data in this way, we hope to make
it easier for machine learning algorithms to interpret the data
and identify patterns. Due to time constrain, we didn’t use the
proposed data transformation method in our training dataset.

C. Models

A Multi-Layer Perceptron (MLP) is a artificial neural
network which consists of different layers of nodes that
process data, and each node is connected to all nodes in the
previous layer. The nodes in the input layer of the MLP are
representative of the attributes of the data, and the nodes in
the output layer are representative of the predicted output.
In between these two layers is the hidden layer, which is
responsible for executing activation functions such as the
sigmoid, tanh (hyperbolic tangent), and the ReLu (Rectified
Linear Unit). Activation functions allow neural networks to
establish nonlinear relationships in data, and this is crucial as
the vast majority of real world problems cannot be modeled
by linear functions. During a process called backpropagation,
the weights in the MLP are adjusted using an optimization
algorithm called gradient descent to minimize the error found
in the predicted output. CNNs use specific layers such as
pooling and convolutional layers to extract features from
images. Consequently, the number of parameters necessary
for training is reduced, leading to a more efficient pattern
recognition model. Knowing the power of pattern recognition
of CNN, we deduce that CNN may be able to find the

difference between depression and bipolar disorder since the
activity level of a patient with bipolar disorder tends to have
a large fluctuation within a day.

Long short-term memory (LSTM) networks were developed
to solve the problem of processing long-term dependencies in
sequential data, such as speech or text. Contrary to MLPs,
LSTMs use memory gates and cells that enable them to retain
or ignore data from earlier time steps in a sequence. We think
LSTM is a reasonable choice because the time series nature of
the dataset and the time of activity level reflects the patient’s
circadian rhythm. People with mental health disorders tend to
have sleep difficulties and different circadian rhythms from
healthy controls. Here are the model architectures of each
model:

1) Convolutional neural network:

• 1 dimensional convolutional layer
• 1 dimensional convolutional layer
• dropout
• 1 dimensional Pooling using maximum
• flattening
• dense layer
• dense layer
2) Long short-term memory network:

• LSTM layer
• dropout
• dense layer
• dense layer

D. Results

The accuracy of CNN was 63.48%, and the accuracy
of LSTM was 75.77%. The accuracy of LSTM is higher,
meaning the circadian rhythm of the patients contributes to
the diagnosis of bipolar disorder, and future modelling should
take the time series nature of the dataset into account.

III. CONCLUSION

In conclusion, the performance of CNN and LSTM without
feature extraction and further preprocessing was limited. The
lack of reliable datasets is the biggest difficulty in applying
machine learning algorithms to mental health disorder detec-
tion. The number of data entries of the dataset we used is
less than 1k after cleaning, which may limit the model from
being exposed to a more diverse dataset and recognizing the
more general pattern. The lack of data points can also lead
to bias against underrepresented groups in the chosen dataset.
Moreover, extracting daily activity has a risk of erasing the
long-term pattern of the dataset and reducing the amount
of information the model can interpret since mental health
disorders can only be diagnosed after days of symptom mon-
itoring. Hence, we suggest future studies consider the long-
term effect of mental health disorders. Also, after extracting
the daily activity level of each patient, the training and testing
data points may contain the activity level data from the
same patient, which may cause overfitting. We also suggest
using data with heart rate monitoring or other physiological
information to assist in the interpretation of activity levels.

In real life, the portion of the population with mental health
disorders is relatively small, meaning the technique of dealing
with an imbalanced dataset needs to be used, for instance,
SMOTE. It is also worth trying to apply the proposed data
transformation method to the cleaned dataset. One can use
the transformed data with some statistical methods such as
logistic regression, classification tree, and random forest. If the
transformed dataset erased too much information, one can also
combine the transformed dataset with the original dataset. A
more in-depth validation of the result is needed. For instance,
the model may be a lot less sensitive to a certain type of
disorder. When the number of data points is small, we suggest
a Leave-One-User-Out validation strategy.

Overall, deep learning algorithms are promising in bipolar
disorder diagnosis, but we face the challenge of the lack of
datasets and the long-term effect of mental health disorders.

REFERENCES

[1] Enrique Garcia-Ceja, Michael Riegler, Petter Jakobsen, Jim Tørresen, Tine
Nordgreen, Ketil J. Oedegaard, and Ole Bernt Fasmer. Depresjon: A
motor activity database of depression episodes in unipolar and bipolar
patients. In Proceedings of the 9th ACM Multimedia Systems Conference,
MMSys ’18, page 472–477, New York, NY, USA, 2018. Association for
Computing Machinery.

[2] Wolfgang Hiller, Gabriele Dichtl, Heidemarie Hecht, Wolfgang Hundt,
Werner Mombour, and Detlev von Zerssen. Evaluating the new icd-
10 categories of depressive episode and recurrent depressive disorder.
Journal of Affective Disorders, 31(1):49–60, 1994.

[3] Petter Jakobsen, Enrique Garcia-Ceja, Michael Riegler, Lena Anton-
sen Stabell, Tine Nordgreen, Jim Torresen, Ole Bernt Fasmer, and
Ketil Joachim Oedegaard. Applying machine learning in motor activity
time series of depressed bipolar and unipolar patients compared to healthy
controls. PLOS ONE, 15(8), 2020.

[4] Zainab Jan, Noor AI-Ansari, Osama Mousa, Alaa Abd-alrazaq, Arfan
Ahmed, Tanvir Alam, and Mowafa Househ. The role of machine learning
in diagnosing bipolar disorder: Scoping review. Journal of Medical

Internet Research, 23(11), 2021.
[5] National Institute of Mental Health. Bipolar disorder. https://www.nimh.

nih.gov/health/topics/bipolar-disorder. Accessed: 2023-03-01.
[6] Praveen Manoj Singh and P. S. Sathidevi. Design and implementation

of a machine learning-based technique to detect unipolar and bipolar
depression using motor activity data. Lecture Notes in Networks and

Systems, page 99–107, 2021.
[7] wikipedia. Bipolar disorder. https://en.wikipedia.org/wiki/Bipolar

disorder. Accessed: 2023-03-01.

https://www.nimh.nih.gov/health/topics/bipolar-disorder
https://www.nimh.nih.gov/health/topics/bipolar-disorder
https://en.wikipedia.org/wiki/Bipolar_disorder
https://en.wikipedia.org/wiki/Bipolar_disorder

Atlas: Find Anything on YouTube
Tomiwa Ademidun

Atila Inc.
tomiwa@atila.ca

Aaron Doerfler
Ivey Business School

adoerfler.msc2023@ivey.ca

Shania Sheth
Queen’s University

shania.sheth@queensu.ca

Abstract—Atlas uses OpenAI’s Whisper, UKP Labs Bidirec-

tional Encoder Representations from Transformers (BERT’s) sen-

tence transformer model, and bidirectional and auto-regressive

transformers (BART) long-form question answering (LFQA)

system to summarize and search any YouTube video. Atlas is

designed to improve access to information and help create a

more equitable and informed society through the use of artificial

intelligence solutions. It takes a transcript and breaks it up into

smaller segments converted into a 768 vector array. The vector

array is saved in a vector database provided by Pinecone and

then uses this database to determine which transcript segment

vector is nearest to our search phrase vector and combines the

search results to create a long-form answer that is outputted to

the user. Atlas saves a significant amount of time and resources

by summarizing one of the world’s largest hubs of knowledge.

I. INTRODUCTION

Atlas is an AI-powered search engine that can summa-
rize and search any YouTube video. YouTube is one of the
world’s largest sources of information with about 500 hours
of video uploaded to YouTube every minute [1]. However,
unlike Reddit, Twitter, Wikipedia, books and other text-based
information sources, information on YouTube is not well
indexed. Sure, you can do a keyword search but can’t find
the precise timestamp of the information you want. Atlas fixes
this. A search engine for one of the world’s largest hubs of
knowledge makes it easy to access a huge untapped source of
information. The user enters the URL of any YouTube video
and a query term, and Atlas will return terms directly related
to the search query. It works by getting the transcript of a
YouTube video using the URL from the YouTube transcript
API or if that transcript does not exist, it downloads the audio
of the video as an mp3 file with Pytube and uses OpenAI
Whisper to transcribe. Then, the transcript is broken up into
shorter segments which are converted into a 768 vector array
using UKP Labs Bidirectional Encoder Representations from
Transformers (BERT’s) sentence transformer model. Atlas
then uses Pinecone to save the vector array in a vector
database and takes the search phrase and embeds it into a 768
vector array. Using the vector database Atlas determines which
transcript segment vector is nearest to our search phrase vector
and combines the search results to create a long-form answer
using bidirectional and auto-regressive transformers (BART)
long-form question answering (LFQA).

A. Motivation

In the last few years, we have seen a rise in AI re-
search projects related to language modelling. Most recently

in September of 2022, OpenAI released their open-source
automatic speech recognition (ASR) neural net called Whisper
[2]. In the announcement blog post which summarizes the
research paper, OpenAI says that the decoder is trained to
generate the text caption that corresponds to the audio, while
also incorporating special tokens that guide the model to
perform additional tasks like identifying language, creating
phrase-level timestamps, performing multilingual speech tran-
scription, and translating speech to English (see Figure 1) [3].
The developers envisioned a wider set of applications related
to voice applications, and while YouTube does try and caption
each of their videos, Whisper can do it in real-time, faster, and
with much better performance.

Fig. 1. OpenAI Whisper diagram, sourced from their research paper.

Sentence-BERT, a modification of the pre-trained BERT
network that uses siamese and triplet network structures (see
Figure 2) [4], is another recent AI research project in language
modelling. SBERT can be leveraged to generate high-quality
sentence embeddings, which can be used to identify the most
semantically relevant sentences in a video’s transcript. By
identifying these key sentences, an AI video summarization
tool could automatically generate a summary of the video’s
content that captures the most important aspects of the video.
This has the potential to save time and effort for students,
researchers, and anyone who needs to quickly understand the

key points of a video without having to watch the entire
thing. Thus, we thought using this summarization tool could
significantly enhance the accuracy and efficiency of the tool
we intended to create.

Fig. 2. SBERT architecture with classification objective function and SBERT
architecture at inference, for example, to compute similarity scores, sourced
from their research paper.

The last piece of the puzzle, so to speak, comes in the
form of question-answer systems. In 2019, Angel Fan et al
wrote their research paper titled “ELI5: Long Form Question
Answering”. This sequence-to-sequence (seq2seq) system took
270,000 question-and-answer pairs from the subreddit “Ex-
plain Like I’m Five”, which is exactly as the title describes,
as data, and use it to output paragraph-length explanations in
response to complex questions (see Figure 3) [5]. This would
allow us to create something that could make complex topics
more digestible and more concise for readers.

Fig. 3. ELI5 questions by starting word, where box size represents frequency,
sourced from their research paper.

Using these three AI technologies we decided that we
wanted to explore ways to make information on the internet
more digestible for the average user.

B. Related Works
One person we got a lot of inspiration from was James

Briggs. James is a freelance machine learning engineer, startup
advisor, and developer advocate at Pinecone. James has pub-
lished blog posts and YouTube tutorials using both Whisper
(see Figure 4) [6] and Natural Language Processing [7] to
revamp YouTube searches. James’ methodology served as the
basis for Atlas. What he did is create an app that can get

specific timestamps that answer the search query, however,
limited currently to 5 channels that are related to ML. His
first step was to download YouTube video data and extract the
audio in each video using PyTube and then use Whisper to
transcribe the audio. Using Hugging Face datasets that include
short clips of the transcribed audio, it merges every six seg-
ments while also moving forward three segments to make sure
that meaningful segments do not get cut completely and are
instead included in the next iteration. Using a Hugging Face
QA model from their transformers and sentence transformers
library he encodes the segments and inserts the embeddings
into a vector database. Then he encodes the query using the
same embedding model he used to encode the segments and
passes the query to the vector database which returns the
relevant information from the transcript and a timestamp from
the videos. One limitation of this work is that the current scope
is limited to only a few videos talking about machine learning,
natural language processing, and vector search. That leaves an
area for someone to create something similar with expanded
data sets that would allow for any phrase to be searched in
any video on YouTube.

Fig. 4. Overview of the process used, covering OpenAI’s Whisper, sentence
transformers, and the Pinecone vector database, sourced from Briggs’ blog
post.

C. Problem Definition

What we see in the blog post from James Briggs is a tool
that worked only for five channels and for specific prompts
related to ML. We see an opportunity to expand this to include
not just a few channels and topics, but unlock the full range
of topics that can be found on YouTube. At the most basic
level, Atlas summarizes and makes it much more convenient
to find specific information in a YouTube video. This could
be useful for students, researchers, or just casual viewers who
want to learn more about a specific topic more efficiently.
However, Atlas also helps makes information more accessible
by providing simple summaries of even the most complex
terms. This has huge value in improving education access.
There are about 5.16 billion people who have access to the

Fig. 5. Full Atlas process breakdown

internet [8] but come from different countries with different
languages, cultural norms and educational backgrounds. Atlas’
summarization feature makes it easy for someone to learn
about something as complex as quantum computing in a much
more digestible manner. Even if only a small part, our goal
with Atlas is to improve access to information and help create
a more equitable and informed society.

II. METHODOLOGY

In this section, describe your overall design process, and
walk through the details of each step.

The start of the design process stemmed from the James
Briggs blog post mentioned in section 1b titled Related Works.
For Atlas to work it needs to obtain some sort of transcript
from the input YouTube video. The first method of obtaining
this video utilizes the YouTube transcript API to extract the
transcript by using its URL. This involves sending an API
request to the YouTube servers and receiving a response
containing the transcript data in a standardized format such
as JSON. If the video does not have a transcript available, a
second method is needed to download the audio of the video
as an MP3 file using the Pytube library and apply Whisper
to transcribe it. It is necessary to break up an audio transcript
into shorter segments to facilitate further analysis, so we used
UKP Labs BERT’s sentence transformer model to transform
each segment into a 768-dimensional vector array. This model
is a variant of the BERT architecture that has been pre-trained
on large amounts of text data and can effectively capture the
semantic meaning of sentences [9]. The process of converting
each segment to a vector array involves passing the segment
through the sentence transformer model, which outputs a 768-

dimensional vector that represents the semantic meaning of the
segment. We then needed some sort of vector database to save
the vector array and decided to go with Pinecone’s cloud-based
vector database service. To begin you have to create a Pinecone
client object, which connects to the Pinecone API. The vector
array is indexed using a unique identifier that allows it to
be easily retrieved later. This involves calling the Pinecone
index method, which takes the identifier as input and the
vector array to be stored. Pinecone then automatically encodes
and compresses the vector data and stores it in a distributed,
high-performance storage system. Once the vector array has
been indexed, it can be easily queried using Pinecone’s search
API, which takes as input a query vector and returns the most
similar vectors in the database [10].

When the user enters a query, it is then embedded into the
768 vector array and using the vector database, Atlas finds
which transcript segment vector is nearest to our search phrase
vector. Two vectors are considered to be ”near” or ”similar”
if they are close to each other in terms of some distance
metric and are often euclidean distance or cosine distance,
which measures the geometric distance or the angle between
the vectors [11]. This indicates that these vectors share similar
properties. Finally, Atlas used BART LFQA to create a long-
form answer. BART is a pre-trained language model that has
shown excellent performance in answering complex questions
in a more digestible manner. For example, the user enters
a search term such as “what shoes should I wear” and it
returns a list of matches. Then we take each of those matches
and ask our generator model to combine them to generate a
coherent sentence (see Figure 5 for a visual depiction of the
full process).

There are a number of ways to evaluate the success of Atlas.
One such metric is the precision and recall of the summary,
which measures the percentage of important information that
is included in the summary and the percentage of unimportant
information that is excluded. As we continue to use and test
Atlas we also have a part to play in assessing the summary
quality. We hope to have users read over the summary and
rate its overall effectiveness in conveying the key information
from the video and provide us with feedback. There could be
other methods too, such as the diversity and coverage of the
summary. In terms of finding terms related to the search query,
being sure that those are indeed related and that Atlas has
picked out the most related terms would be useful in evaluating
the success as well.

III. RESULTS

We found that the project does save a significant amount
of time and resources by quickly providing summaries of
long videos and presenting relevant information to the user’s
search query. For example, we tested out a clip from the
Joe Rogan Experience where he is interviewing AI scientist
Lex Fridman [12] with the search query “basketball”. Even
though the word basketball is never said, Atlas returned the
exact timestamp where Lebron James and Michael Jordan
are brought up in the conversation. Additionally, when we
ask Atlas to summarize a closet organization video [13], it
returns “A wardrobe essentials video is being made by a
YouTube channel. The purpose of the video is to give a more
comprehensive guide to how to pick a flattering fit and good
quality pieces so that you can build a solid base to your
wardrobe and then branch out from there.” Thus, it seems that
Atlas is fairly accurate in its output. In the future we hope
that it could provide the name of the creator, for example, to
make the summary even more accurate.

Fig. 6. Atlas closet example

Over the course of this project, we got to learn about the
different ways to gather the information included in videos
and how these can be effectively summarized using various
ML techniques. This includes getting a better understanding of

how much more effective Whisper is compared to YouTube’s
built-in transcription software. We also got to explore different
language models such as BERT and BART LFQA and how
those AI applications could help us work towards our goal.
These integrations have so far worked as expected which
has not forced us to go look for other alternative solutions.
The biggest advantage of using this method was that we are
getting technology that does exactly what we need it to do.
This saved us a lot of time by not forcing us to go and
build our own transcriber or sequence-to-sequence system but
instead focusing on putting them together and creating the
user interface. The hard part was deploying an ML app to a
production environment so that other people could use it. This
was frustrating because we would spend an entire day trying
to use more “do it yourself” hosting options like Sagemaker
only to realize that it was too complicated and have to then
switch to a different provider. However, it forced us to learn
about a lot of very interesting ML deployment products like
banana.dev and Paperspace even though they all ended up
being too confusing to use. For example, there is a way to get
whisper to include the timestamp when you transcribe but you
need to pass in the argument verbose=true. The models that
claimed to be “easy to use” achieved this easily by removing
a lot of customizability, so It was not clear that any of the
three options we tried would allow us to add timestamps.
All of the ML deployment options we came across were
unusable until we came across the Hugging Face Inference
endpoint which provided the perfect mix between Sagemaker’s
customizable but complicated setup and the cottage industry
of other providers where you could not customize anything.

IV. CONCLUSION

To conclude, Atlas is an AI-powered search engine that can
summarize and search any Youtube video. By making a search
engine for one of the world’s largest hubs of knowledge, we
unlock access to a huge untapped source of information. Atlas
makes it convenient to find specific information and could be
useful for students, researchers, or just casual viewers who
want to learn more about difficult topics in a digestible manner.
The search function also helps users find the most relevant
information to their specific search query.

The great thing about the current state of AI is that a
lot of resources are open-sourced. This is very useful in
helping people learn how to code or being able to utilize
APIs in their own work. Model creation and implementation
are very advanced however, model deployment still has a
lot of room for improvement. One immediate issue we have
to solve is the feasibility of hosting services. Hosting our
model on Hugging Face costs 438.05 a month and we use
a Small GPU 1X Nvidia Tesla T4. Huggingface does not
support updating existing endpoints to a newer commit so
each time we update handler.py we had to delete existing
endpoints and deploy a new one. We updated the code
frequently and created newer endpoints, but forgot to delete
the older ones and thus we had 4 endpoints running at
the same time costing us an extra 100.Paying400 is not

necessarily the problem, but our service is still a relatively
small side project serving less than 100 requests a day so
400forsuchlowusageiswaytoomuch.Inthefuture, wealsowanttomakesurethatAtlasimprovesthequalityofitssummaryresponsestoensurethatusersaregettingthebestexperiencepossible.

Atlas is an open platform. We chose this because we believe
that open platforms last longer than closed platforms and are
generally better for society. Such a powerful tool should be
built in the open to force transparency and make decisions that
are most aligned with humanity. Atlas is a stepping stone on
this path, and we are excited to play a role in improving access
to information and education through the use of artificial
intelligence.

REFERENCES

[1] L., C. (2022, June). Youtube: Hours of video uploaded
every minute 2022. Statista. Retrieved March 2, 2023, from
https://www.statista.com/statistics/259477/hours-of-video-uploaded-
to-youtube-every-minute/

[2] Radford, A., Kim, J. W., Xu, T., Brockman, G., Mcleavey, C., amp;
Sutskever, I. (2022, September 21). Robust speech recognition via
large-scale weak supervision. OpenAI. Retrieved March 2, 2023, from
https://cdn.openai.com/papers/whisper.pdf

[3] Open AI. (2022, September 21). Introducing Whisper. OpenAI. Re-
trieved March 2, 2023, from https://openai.com/research/whisper

[4] Reimers, N., amp; Gurevych, I. (2019, August 27). Sentence-BERT:
Sentence embeddings using Siamese Bert-Networks. TU Darmstadt.
Retrieved March 2, 2023, from https://arxiv.org/abs/1908.10084

[5] Fan, A., Jernite, Y., Perez, E., Grangier, D., Weston, J., amp; Auli,
M. (2019, July 22). Eli5: Long form question answering. arXiv.org.
Retrieved March 3, 2023, from https://arxiv.org/abs/1907.09190

[6] Briggs, J. (n.d.). OpenAI whisper: Introduction and ex-
ample project. Pinecone. Retrieved March 2, 2023, from
https://www.pinecone.io/learn/openai-whisper/

[7] Briggs, J. (n.d.). Making YouTube search better with NLP. Pinecone.
Retrieved March 2, 2023, from https://www.pinecone.io/learn/youtube-
search/

[8] Petrosyan, A. (2023, February 24). Internet and social media
users in the world 2023. Statista. Retrieved March 2, 2023,
from https://www.statista.com/statistics/617136/digital-population-
worldwide/: :text=As

[9] Reimers, N., amp; Gurevych, I. (2019, August 27). Sentence-BERT:
Sentence embeddings using Siamese Bert-Networks. TU Darmstadt.
Retrieved March 2, 2023, from https://arxiv.org/abs/1908.10084

[10] Pinecone. (n.d.). Overview. Pinecone. Retrieved March 2, 2023, from
https://docs.pinecone.io/docs/overview

[11] Briggs, J. (n.d.). Using semantic search to find gifs. Pinecone. Retrieved
March 2, 2023, from https://www.pinecone.io/learn/gif-search/search

[12] Rogan, J., amp; Fridman, L. (2022, December). Joe Rogan
amp; Lex Fridman: Lionel Messi Is The GOAT Over
Cristiano Ronaldo. YouTube. Retrieved March 2, 2023, from
https://www.youtube.com/watch?v=cnFCGOWHQ7A

[13] bestdressed. (2019, April 18). The Ultimate Guide to
Closet Essentials. YouTube. Retrieved March 3, 2023, from
https://www.youtube.com/watch?v=TuPyVPdH814

Benchmarking Training and Inference Times of
Deep Learning Frameworks in Python and Julia

Trevor Yu
University of Waterloo

trevor.yu@uwaterloo.ca
Author

Anusha Raisinghani
University of Waterloo
araising@uwaterloo.ca

Contributor

Musaab Siddiqui
University of Waterloo

mm4siddi@uwaterloo.ca
Contributor

Urban Pistek
University of Waterloo
upistek@uwaterloo.ca

Contributor

Yash Pokra
University of Waterloo
ypokra@uwaterloo.ca

Contributor

Adish Shah
University of Waterloo
ap8shah@uwaterloo.ca

Contributor

Ethan Gabriel
University of Waterloo

e6gabrie@uwaterloo.ca
Contributor

Abstract—While the two most popular deep learning frame-
works in 2022 were TensorFlow and PyTorch, there are many
other actively developed, open source frameworks available in the
Python and Julia programming languages. In this paper, we build
models from scratch using six frameworks: TensorFlow, PyTorch,
MXNet, and JAX in Python, and Flux and KNet in Julia. We train
a multi-layer perceptron on the MNIST dataset and a ResNet
on the CIFAR-10 dataset. From these tests, JAX had the fastest
runtime metrics for training on all tasks, being 8.5x - 17x faster
than other frameworks for ResNet epoch training times, and
despite also including the compile time, had the fastest total
training times. Although JAX had the fastest runtime, writing
JAX code is less developer friendly than other popular Python
frameworks. In future work, we plan to benchmark more models
such as a transformer.

I. INTRODUCTION

A. Motivation

In recent years, advances in AI models such as GPT-3
Stable Diffusion have been based on deep neural networks.
To build and train neural networks, there have been many
deep learning frameworks developed in various programming
languages. According to the Stack Overflow Developer Survey
in 2022, the two most popular deep learning frameworks are
TensorFlow [1] and PyTorch [2], both of which have APIs in
the Python programming language [3]. However, there are also
many actively developed, open source frameworks available,
such as Apache MXNet [4] and Google JAX [5] with Python
APIs, and Flux.jl [6], [7] and KNet.jl [8] in Julia. As the
ecosystem of deep learning packages has matured and evolved,
there have not been any recent, comprehensive comparisons
between all these frameworks, particularly on the speed of
these frameworks.

B. Background

In deep learning, neural networks are trained by applying
first-order gradient-based optimization to update the parame-
ters of the network to minimize a loss function between model

outputs and training data labels. The main computational over-
head during training a neural network comes from computing
the gradients of the parameters through backpropagation.

Automatic differentitation (AD) allows the automatic com-
putation of derivatives of arbitrary numerical functions without
having to define exact, symbolic expressions for derivatives of
custom functions. AD is implemented by recording function
calls in a computational graph and applying the chain rule to
low-level operations to compute derivatives [9]. Backpropaga-
tion is a special case of reverse-mode AD, which involves a
forward pass through a model to record all operations, and a
reverse pass to compute the gradient of the loss with respect to
each model parameter. Automatic differentiation is core part
of deep learning frameworks, though AD can be used for other
applications beyond deep learning.

Julia is a flexible, multi-paradigm, dynamic language built
with the performance of numerical computing in mind [10].
Julia uses just-in-time (JIT) compilation using LLVM to
achieve performance comparable to traditional statically-typed
languages. Packages in Julia, like Flux and KNet, leverage the
extensible of the language and are essentially all high-level
Julia code, which when JIT compiled, gain the performance
benefits of Julia. Due to this extensibility, it is possible to
integrate multiple different AD engines to compute gradients
of neural network models, although the one used by Flux is
Zygote, which uses source code transformation to run AD
[11]. Because of the JIT compilation, the computation graph
generated in the Julia frameworks is static. Julia also has a
CUDA.jl package that allows for compatibility of running ar-
ray computations on Nvidia graphical processing units (GPU)
hardware accelerators.

The Python packages for TensorFlow, PyTorch, and MXNet
all are high-level APIs in Python to call lower-level, compiled
primitives written in C++ and CUDA. These three frameworks
all make use of their own tensor array class and have an
dynamic, graph-based AD engine that allows for a simple API
call for computing gradients via backpropagation. Although
the core compiled libraries of these frameworks are fast and ef-

ficient for the hardware, there is still a large speed and memory
overhead of using the Python interpreter for defining the high-
level code execution. TensorFlow, PyTorch, and MXNet all
have modules defining common neural network layers, through
tensorflow.keras, torch.nn, and mxnet.gluon re-
spectively.

JAX is an automatic differentiation library that uses the
accelerated linear algebra (XLA) engine to JIT compile Python
functions to optimized hardware kernels. Unlike the other
Python frameworks, JAX uses a static, compiled computation
graph of XLA operations for its AD engine. The Flax library
[12] is built on top of JAX to provide common neural network
layers and an API similar to TensorFlow for building models.

C. Problem Definition

In this paper, we benchmark the speed of various deep
learning frameworks from both the Python and Julia program-
ming languages. In Python, we evaluate TensorFlow, PyTorch,
MXNet, and JAX. In Julia, we evaluate Flux and KNet. We
test these frameworks on two deep learning benchmark tasks:
a multi-layer perceptron (MLP) model trained on the MNIST
dataset and a ResNet convolutional neural network (CNN)
model trained on the CIFAR-10 dataset. We expect that one
of the JIT compiled frameworks (JAX, Flux, KNet) will have
the fastest runtime metrics.

II. METHODOLOGY

Each model is written in each framework, following the
specifications laid out in each task. The relevant neural net-
work primitive layers are used from each framework for model
creation following standard conventions for that framework.
When a layer is not available, a custom implementation is
written. At the time of writing, the KNet implementation for
the CNN was unable to be completed, so it is omitted from
the CNN results.

During testing, each model is trained with 10 repeats, using
a different random seed for each repeat. We record task
metrics for final training loss and final evaluation accuracy
as comparison to ensure models trained in the same way.
The runtime metrics collected are the total training time,
average epoch training time, and average batch inference time.
The total training time includes model forward and backward
passes, JIT compile time, and inference on the evaluation
dataset after each training epoch. The average epoch training
time includes just the model forward and backward passes on
the training data. If the framework has JIT compile time, the
time of the first epoch is excluded when computing the average
epoch training time. The average batch inference time is the
total inference time on the test dataset divided by the number
of batches in the test dataset. We use the same batch size in
training as in inference.

Code for the models, training scripts, and environment
specifications is available at https://github.com/WAT-ai/DL-
framework-comparison.

A. Multi-layer Perceptron

The first benchmark task we evaluate is the performance
of a single hidden layer MLP on the MNIST handwritten
digits dataset. This dataset consists of 60,000 28x28 images
of handwritten digits from 0 to 9 in greyscale. The images
are preprocessed by normalizing the values between 0 and
1 and flattening the images into a 784 dimensional vector.
The standard MNIST train split of 50,000 images is used for
training and the 10,000 test split is used for evaluation. Targets
are converted into one-hot vectors.

The model consists of two dense layers with a ReLU hidden
activation. The first dense layer has input size of 784 and
output size of 100. The second dense layer has input size of
100 and output size 10, for the number of classes. We use
cross entropy loss from logits as the loss function and the
Adam optimizer with a learning rate of 1e-3, �1 = 0.9, and
�2 = 0.999. The model is trained for 10 epochs with a batch
size of 128.

Fig. 1. Comparison of (a) original ResNet and (b) ResNetV2 blocks [13]

B. Convolutional Neural Network

The second benchmark task we evaluate is the performance
of a small ResNet on the CIFAR-10 tiny images dataset.
This dataset consists of 60,000 32x32 RGB images over 10
different classes of vehicles and animals. The images are
preprocessed by first converting int8 values to the range of [0,
1], then normalizing by the ImageNet statistics: subtracting
means [0.485, 0.456, 0.406] and dividing by standard devia-
tions [0.229, 0.224, 0.225] for the red, green, and blue channels
respectively. The standard train split of 50,000 images is
further divided into 45,000 training images and 5,000 valida-
tion images. The 10,000 test images are only evaluated after
training.

Data augmentation is applied to the training data only as in
[14]. The augmentation applied is 4 pixel padding to each side

https://github.com/WAT-ai/DL-framework-comparison
https://github.com/WAT-ai/DL-framework-comparison

Fig. 2. Task metrics for MLP and CNN models

of the image, applying a random horizontal flip, and applying
a random 32x32 crop.

The model is a 20-layer ResNet composed of basic blocks as
used in [15] for testing on CIFAR-10, except we used the basic
block structure of ResNetV2 [13]. These blocks apply layers
in the order of BatchNorm-ReLU-Conv (Figure 1b) of Conv-
ReLU-BatchNorm (Figure 1a). The residual used by the model
in [15] is the identity shortcut, which downsamples inputs by
the same stride factor as the first strided convolution, and fills
extra channels in the residual are filled with 0s to ensure the
residual shape matches the final shape of the processing layers.

We use cross entropy loss from logits as the loss function
and the Adam optimizer with a learning rate of 1e-3, �1 = 0.9,
and �2 = 0.999. The model is trained for 10 epochs with
a batch size of 128 on a CUDA capable GPU. While this
optimization routine is different from [15], the goal is not
to recreate the results of another paper, but to benchmark
the speed of these different frameworks using a consistent
architecture and training method.

C. Hardware and Environment

The computer used for experiments has an Intel i7-3930K
CPU, 42 GB of RAM, and a Nvidia Titan Xp GPU with 12
GB of VRAM, using Nvidia driver version 515.85.01. The
environments were built in Docker with Nvidia CUDA base
images using Ubuntu 20.04, CUDA 11.4.2, and cuDNN8. The
Python container uses Python 3.8.10 and the following deep
learning package versions: JAXlib 0.4.1, TensorFlow 2.11.0,
torch 1.13.1, and MXNet 1.9.1. The Julia container uses Julia
1.8.5 and the following deep learning package versions: Flux
1.4.10, KNet 0.13.13, and CUDA 3.13.1.

III. RESULTS

Figure 2 shows the loss and test accuracy metrics for the
two models. For the MLP, the loss and accuracy metrics
are comparable across frameworks. However, for the CNN,
Flux has a much higher training loss and lower test accuracy.

Although the goal is not to have the task performance metrics
be identical, having the metrics being comparable is a good
sanity check for ensuring the models are written as similarly
as possible. One of the uncontrolled variables that might
contribute to the differences in performance metrics is the
parameter initialization strategy. For example, PyTorch uses
Kaiming uniform as the default initialization in its Linear
layer, while PyTorch uses Glorot uniform as the default
initialization in its Dense layer.

Figure 3 shows the runtime metrics for the two models. For
the MLP, PyTorch has the longest training time and inference
time. The Julia frameworks have a longer total training time
than TensorFlow and MXNet, but their average epoch training
time was faster than that of the dynamic Python frameworks.
This suggests that the Julia compile time improves the per-
epoch performance, but overall is a penalty in this small model.
Despite also including JIT compile time, JAX has the fastest
total training time of 13.6 s and the fastest average epoch
training time of just 0.94 s. However, JAX’s inference time
is slower than the Julia frameworks having an average batch
inference time of 1.27 ms compared to under 0.6 ms for
both Flux and KNet. However, the other frameworks show a
considerable speed up in inference time compared to PyTorch,
which takes nearly 20 ms to process a batch.

For the CNN, JAX is the fastest across all three runtime
metrics, with a total training time of 108 s, average epoch
training time of 3.72 s, and average batch inference time of
3.08 ms. Interestingly, the next fastest training time is PyTorch,
which performs the worst in the MLP, although its average
epoch training time is 8.57x slower than JAX. Although it
is JIT compiled, Flux has an average epoch training time
similar to that of TensorFlow, which was 17x slower than
JAX. However, it was observed that during training, the GPU
was underutilized during Flux training, suggesting that some
of the CPU-bound data processing might be hindering its per-
formance. Despite their slower training times, TensorFlow and
Flux have considerable speedups during inference, especially

Fig. 3. Runtime metrics for MLP and CNN models (lower is better)

compared to MXNet and PyTorch.

A. Discussion
One advantage of JAX is that the XLA compiler is op-

timized for performing linear algebra operations as used in
neural networks. In the case of Flux, the compilation and AD
is performed on Julia code, which is not necessarily optimized
for linear algebra. Perhaps due to residuals in the CNN model,
it can be harder to run AD compilation in Julia, so Flux does
not enjoy the same JIT compile speedups as it did in the MLP.
Despite the JIT compile time, JAX was faster than the other
three Python frameworks in all runtime metrics.

Although JAX is the fastest Python deep learning framework
in these tests, it comes with some limitations that curtails
its widespread use. The JAX API is much more difficult to
use PyTorch and TensorFlow, particularly for writing code
to setup training for the models. Rather than a consistent
object-oriented API for training, a JAX developer will need
to explicitly define the way the state of a model’s parameters
are applied to process input data and updated based on a loss
function. There are also limitations to kinds of functions that
can be JIT compiled with JAX, such as static array shapes,
no in-place array updates, and writing pure functions. Poorly
written JAX code will not result in performance gains and may
not even run. Using neural network primitives in Flax helps,
but not all primitives are implemented. Often, we want custom

operations so model developers would need to be familiar with
how to implement these in a JAX-compliant way to reap the
benefits of its runtime efficiencies. Overall, using JAX for deep
learning is much less developer-friendly than frameworks like
TensorFlow and PyTorch.

IV. CONCLUSION

Through this work, we benchmark six deep learning frame-
works in Python and Julia through building models from
scratch for a MLP on the MNIST dataset and a ResNet on
the CIFAR-10 dataset. Through running these benchmarks, we
find that JAX is the fastest Python framework in both total
training time and average batch inference time, despite the
first metric including its JIT compile time. However, it is a
challenge to use JAX effectively compared to other popular
frameworks like PyTorch and TensorFlow.

In future work, we want to create and benchmark more
models, such as generative image models like the variational
autoencoder, and transformer models. These additional models
would help give a sense of how each framework scales with
the size and complexity of models. Additionally, with the
portability of the Docker environment and open source code,
we want to run these benchmarks across different hardware
systems to verify whether the results hold.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015. Software available
from tensorflow.org.

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” CoRR, vol. abs/1912.01703, 2019.

[3] “Stack overflow developer survey 2022,” 2022.
[4] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient
machine learning library for heterogeneous distributed systems,” CoRR,
vol. abs/1512.01274, 2015.

[5] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne, and
Q. Zhang, “JAX: composable transformations of Python+NumPy pro-
grams,” 2018.

[6] M. Innes, E. Saba, K. Fischer, D. Gandhi, M. C. Rudilosso, N. M. Joy,
T. Karmali, A. Pal, and V. Shah, “Fashionable modelling with flux,”
CoRR, vol. abs/1811.01457, 2018.

[7] M. Innes, “Flux: Elegant machine learning with julia,” Journal of Open
Source Software, 2018.

[8] D. Yuret, “Knet: beginning deep learning with 100 lines of julia,” in
Machine Learning Systems Workshop at NIPS, vol. 2016, p. 5, 2016.

[9] C. C. Margossian, “A review of automatic differentiation and its efficient
implementation,” WIREs Data Mining and Knowledge Discovery, vol. 9,
no. 4, p. e1305, 2019.

[10] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp. 65–
98, 2017.

[11] M. Innes, “Don’t unroll adjoint: Differentiating ssa-form programs,”
CoRR, vol. abs/1810.07951, 2018.

[12] J. Heek, A. Levskaya, A. Oliver, M. Ritter, B. Rondepierre, A. Steiner,
and M. van Zee, “Flax: A neural network library and ecosystem for
JAX,” 2023.

[13] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” CoRR, vol. abs/1603.05027, 2016.

[14] C.-Y. Lee, S. Xie, P. Gallagher, Z. Zhang, and Z. Tu, “Deeply-supervised
nets,” 2014.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” CoRR, vol. abs/1512.03385, 2015.

Classifying Motor Imagery from Open Source
Datasets

Liam Schultz
Western University
lschult7@uwo.ca

Pratik Gupta
Western University
pgupta85@uwo.ca

Srinjoy Choudhury
Western University
schoud29@uwo.ca

Abstract—The goal of this paper was to start learning about

how BCI technology works and specifically how to use an

EEG headset to predict motor imagery. The method that was

attempted was to use the CSP method along with a Stockwell

transform to process the data. A CNN was then used as the model

to try to predict when a subject was thinking about performing

movements with their left or right hand. The accuracy achieved

was only 60% on the validation data which is much lower than

expected. Hopefully this project will continue to be worked on

to improve the accuracy and gain further knowledge in this

emerging subject area.

I. INTRODUCTION

A. Motivation

Brain-Computer Interface (BCI) technology is an exciting
emerging field with applications from aiding those with dis-
abilities to gaming. One of the most widely known groups
developing this technology is Neuralink. Their method of
getting data is by implanting electrodes in the brain [1].
However, this is an invasive medical procedure with numerous
ethical concerns. Instead of that, the proposed approach was to
use a traditional electroencephalogram (EEG) device to collect
data and then predict the movement of a user’s limbs. This is
not a particularly groundbreaking idea, however processing
EEG data using AI is a complex subject and this paper
represents a first attempt at understanding and applying some
common methodologies. Hopefully this paper will serve as
a guide to someone interested in the field and eventually a
marker of the progress that has been made.

B. Related Works

One resource that was found was a paper from 2022 by
Chacon-Murguia and Rivas-Posada covering the classification
of motor imagery (where the subject imagines performing a
movement without actually performing any movement) using
a Convolutional Neural Network (CNN) and a variety of
processing methods. The accuracy they managed to achieve
was between 86.47% and 97.67% depending on the processing
methods used. [2] The system they propose is fast enough
to classify 4 different classes of motor imagery in real time.
CNNs are a common type of model used in this field and with
the variety of methods used it was decided that a good first
step would be to replicate this study.

C. Problem Definition

Originally the plan was to get access to an EEG device
to generate data and then use that data to train and validate
various methods. However, due to budget constrains access
to an EEG device could not be obtained. Instead, publicly
available datasets were used to prove the concept. Some early
experimentation was done with the grasp-and-lift dataset [3]
(Note: the dataset is currently hosted on kaggle), but the
BCI-IV-2a dataset [4] was eventually settled on because it is
clearly labelled and also used in many papers. This allowed for
simpler comparisons to the results obtained in other papers.

The most accurate method from [2] was used. Which was
to use Common Spatial Patterns (CSPs) and a Stockwell
transform on the data and then use a CNN for classification.

II. METHODOLOGY

A. Data

The data obtained from the BCI-IV-2a dataset is composed
of 22 channels of EEG data and 3 channels of electrooculo-
gram (EOG) data stored in a .gdf file (General Data Format
for Biomedical Signals) [4]. To generate the data 9 subjects
were asked to imagine moving their left and right hands 72
times each, yielding 144 trials per subject. Note that the dataset
includes two more classes of motor imagery but they were
ignored to simplify the problem. Check the above citation for
a full description. The method used only included 8 of the
EEG channels. The MNE library handled many of the complex
calculations needed and generated the visualizations [5].

Fig. 1. A montage depicting the sensors used.

Figure 1 shows the which sensors were used and where they
are located on the head. The labels correspond to the 10-20
system.

B. Filtering

A 7.5 to 30 Hz 4th order Butterworth band-pass filter was
used to filter each channel because the alpha and beta waves
(the brain waves in the 7.5 to 12 and 12 to 30 Hz ranges) are
the ones relevant to motor imagery [2]. The following figures
show the data before and after being filtered with dashed
vertical lines representing 7.5 and 30 Hz.

Fig. 2. A channel before being filtered.

Fig. 3. A channel after being filtered.

C. Epoch extraction

From each trial in the dataset 2 seconds of activity were
captured and labelled according to which action they were
performing. At this point the trials involving feet and tongue
motor imagery were discarded. The trial labels were also
extracted and encoded into a one-hot encoding.

D. CSPs

CSPs use linear algebra to compute a matrix from the
eigenvalues of the matrix of channels of the labelled data.
Multiplying new data by this matrix will project it into a
subspace of lower dimension. In this case it goes from having
8 channels to having just 2. The matrix will be unique to the
subject but once the data from all the subjects is multiplied by
the its subject’s matrix it can all be used to train the CNN. The
exact mathematical method is detailed in other papers which
also give a better understanding of how this method works [6].
In the method used the CSP matrix was generated using the
training data and then applied the matrix to the testing data

Fig. 4. A topographical representation of the CSP filter.

Figure 4 shows what regions of the brain tend to correlate
with motor imagery. The red regions indicate that there is
some correlation (whether positive or negative) where the blue
regions indicate that there is typically no correlation. The units
of the scale are arbitrary.

E. Stockwell transform

The Stockwell transform is a method of transforming the
data from the time domain to the frequency domain. It is
similar in function to a Fourier transform but the method is
different.

Bicubic Interpolation

Depending on the parameters set for the CSPs and Stockwell
transform the data may be either too large or in an awkward
shape. Ideally the desired image is one that pooling can be
applied to without shrinking it beyond the size of the kernel.
Likewise, too large of an image would be require more mem-
ory and more computation time. So a bicubic interpolation
was applied, which is a common method of shrinking images,
to make the output into a 22x100 matrix.

F. CNN

The CNN used 3 convolutional layers of size 128 with 3x3
kernels and ReLU activations. After each convolutional layer
there is a max pooling layer with a 2x2 pool size and a stride
length of 1. After all of these layers the results are flattened
into a fully-connected layer which feeds into a layer of 2
neurons with a softmax activation which represent the left and
right hands.

III. RESULTS

The model was only able to achieve an accuracy of approx-
imately 60% on the validation data. Unfortunately it overfits
to the training data quite rapidly even when dropout layers are
used. This is far below the expected performance. Reviewing
the paper [2] the expected accuracy with only the CSP method
is over 80%. This indicates that the CSP method used is likely
flawed. Migrating away from the MNE library is a potential
solution. However, the number of epochs extracted was also
lower than the number extracted in the paper. For each epoch
extracted they extracted 8 overlapping epochs which provided
much more training data. MNE does not have an easy way
of doing this so a custom epoch extraction method will likely
have to be written.

IV. CONCLUSION

In this project some of the basic techniques that are used to
process raw EEG data into data which is more comprehensible
to a CNN were covered. Typically the process is to do filtering
on the data, pass it through the CSP method and then do some
form of transform from the time domain into the frequency
domain. This paper used the Stockwell transform but the
Continuous Wavelet Transform (CWT) or even a Short-Time
Fourier Transform (STFT) could also work. The next steps are
to try to get somewhere around an 80% accuracy using only
the CSP method. Once that is achieved a transform can be
applied to improve the accuracy further. Another option is do
more research to find other sources and try to implement some
of the techniques employed in them. Additionally, obtaining
an EEG headset to record data is a goal for the future of the
project. Once a grasp on the common methods used in this
field has been attained more exploratory research could be
done.

REFERENCES

[1] Approach. Neuralink. (n.d.). Retrieved March 12, 2023, from
https://neuralink.com/approach/

[2] Chacon-Murguia, M.I., Rivas-Posada, E. A CNN-based modular classi-
fication scheme for motor imagery using a novel EEG sampling protocol
suitable for IoT healthcare systems. Neural Computing for IOT based
Intelligent Healthcare Systems (2022). https://doi.org/10.1007/s00521-
021-06716-x

[3] Luciw MD, Jarocka E, Edin BB (2014) Multi-channel EEG recordings
during 3,936 grasp and lift trials with varying weight and friction.
Scientific Data 1:140047. www.nature.com/articles/sdata201447

[4] Brunner, C., Leeb, R., Müller-Putz, G. R., Schlögl, A., Pfurtscheller,
G. (2008). BCI competition 2008 - Graz data set A. berlin
brain-computer interface (BBCI). Retrieved March 12, 2023, from
https://www.bbci.de/competition/iv/desc 2a.pdf

[5] Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann,
Daniel Strohmeier, Christian Brodbeck, Roman Goj, Mainak Jas, Teon
Brooks, Lauri Parkkonen, and Matti S. Hämäläinen. MEG and EEG
data analysis with MNE-Python. Frontiers in Neuroscience, 7(267):1–13,
2013. doi:10.3389/fnins.2013.00267.

[6] Wang, Y., Gao, S., & Gao, X. (2005). Common Spatial Pattern Method
for Channel Selection in Motor Imagery Based Brain-computer Inter-
face. In 2005 27th Annual International Conference of the IEEE engi-
neering in Medicine and Biology Society (pp. 5392–5395). Shanghai,
China; IEEE.

Comparing AI Navigation Methods Using
Counter-Strike: Global Offensive

Michael Salton
Western University

msalton@uwo.ca

Ethan Pisani
Western University

episani2@uwo.ca

Swayam Sachdeva
Western University

ssachd29@uwo.ca

Abstract—This paper describes two AI agents built to play

the first-person shooter video game ”Counter-Strike: Global

Offensive” (CS:GO). The first agent uses a combination of

YOLOv7 object detection and A* pathfinding algorithm. The

second agent uses a deep neural network trained on a large

data set of video footage of professional CS:GO matches using

behavioural cloning and offline reinforcement learning. While

most ”aim-bot” programs tap into the games memory to retrieve

information such as the coordinates of players and aim the mouse

directly at them, the goal for our project was to create an AI that

can match the performance and behaviour of real players while

relying purely on the visuals on the screen. We look to compare

the behaviour and realism of an AI built with pathfinding vs an

AI built with machine learning.

I. INTRODUCTION

Counter-Strike: Global Offensive is a popular first-person
shooter video game that has gained immense popularity among
gamers worldwide. With the rise of artificial intelligence (AI),
there has been increasing interest in developing AI-based
systems capable of playing complex games such as CS:GO. In
recent years, researchers have focused on developing AI bots
that can compete against human players in online matches.
These AI bots are designed to learn from the gameplay data,
enhance their strategies, and eventually surpass human players
in their gameplay performance. However, these projects mostly
focused on games with convenient APIs that make it easy to
scrap data from the game. Whereas for CS:GO, these tools are
not available, which precludes us from using these common
techniques.

In this research paper, we present a novel AI-based system
that has been developed to play CS:GO. The AI agent is
designed to learn and adapt to different game scenarios and
player styles. Our research aims to explore the capabilities
of machine learning approaches to problems and compare
that to the typical pathfinding-like AI, in both video games
and real-world scenarios. The paper provides insights into the
development of machine learning based systems for gaming
applications and the challenges faced in designing effective AI
bots for video games and real-world systems.

A. Motivation

The use of behavioural cloning and reinforcement learning
presents a promising approach to creating an AI that can
effectively play CS:GO. Behavioural cloning, which involves
training an agent to mimic the actions of expert players,

provides a good starting point for building an intelligent agent.
Reinforcement learning, on the other hand, enables the agent
to learn from its own experiences in the game environment
and improve its decision-making over time.

The ultimate goal of this research is to develop an AI agent
that can compete with human players in CS:GO. Such an
agent would have numerous practical applications, including
enhancing the game experience for players by making AI in
video games more realistic and potentially even applying these
techniques to real-world scenarios involving AI.

We aim to distinguish between ”dumb” and ”smart” AI and
explore the advantages and disadvantages of each. We define
”dumb” AI as relying on traditional pathfinding techniques,
where movements are predetermined or precalculated by the
computer. This type of AI has been commonly used in video
games since the inception of the industry, including popular
titles like Mario, Half-Life, Elder Scrolls, and Grand Theft
Auto. On the other hand, we define ”smart” AI as utilizing
dynamic, real-time calculations, that is built with some form
of machine learning approach. We will discuss the two AI
agents we have built, one ”dumb” and one ”smart”, and see
how they compare to each other. What kinds of advantages
does either AI bring and what are the problems associated
with each technique. Finally, thinking about the future of video
games, what kind of AI will be the better option for taking the
gaming experience to the next level. Our paper mainly focuses
on the navigation aspect of AI. The reason we chose to use
CS:GO as our test field as opposed to an environment that is
based purely around navigation, like a maze for example, is
because; generally in video games, the AI has other actions
it performs alongside movement and we wanted to see how
these actions affect the AI’s movement and what steps need
to be taken to keep them from ”breaking”.

This research will not only contribute to the field of AI by
advancing our understanding of how to build intelligent agents
that can play complex games like CS:GO, but it will also have
practical implications for the gaming industry and beyond. We
believe that the results of this research will be of significant
interest to game developers, players, and researchers alike,
and will pave the way for further research into the interesting
overlap of AI and video games.

B. Related Works

We came across a paper on behavioural cloning for CS:GO.
Entitled: “Counter-Strike Deathmatch with Large-Scale Be-
havioural Cloning”, the paper goes over how Tim Pearce and
Jun Zhu designed a convolutional neural network (CNN) and
a long short-term memory (LSTM) neural network to play
CS:GO only training on video frames and user input. This
is the basis for the ”smart” AI model we envisioned. They
used 93 hours of online messy data along with a few hours
of expert data to train the model. It resulted in a medium-
level CS:GO bot in difficulty. The model learned to navigate
the 3d environment and was able to identify and shoot enemy
players. It also learned human-like strategies like spray control
while also having its own strategies. It can still be beaten by a
human more times than not, but it is very promising research
into the aspect of learning strategy from watching players play
the game.

C. Problem Definition

A simple path-finding-like approach may be an easy and
common solution for many of today’s technologies such as
video games, exploration, and industrial automation, to name
a few. With video games, probably the most obvious example,
pathfinding algorithms have been in place since the beginning.
Most games work by having the computer direct characters
around the map via a predefined path, or a set of predefined
locations. The developers can set up more intricate character-
istics to these paths such as a set of rules stating certain paths
are preferable over others as some may contain some kind of
”risk” or ”reward”, as well as dealing with dynamic in-game
objects. Much of the time these dynamic in-game objects are
also under the computer’s control, so the program may have
to account for a multitude of different entities and move them
all in accordance with each other.

Multi-agent path finding (MAPF) is a pathfinding system
that has two or more agents navigating the graph. There is a
set of common problems with MAPF which are, vertex conflict
(two agents attempt to navigate to the same vertex), edge
conflict (two agents attempt to use the same edge in the same
direction), swap conflict (two agents attempt to use the same
edge but in opposite directions (swap positions)), and follow
conflict (when one agent attempts to occupy a position at a
given time h that was occupied by another agent at time h�1).
These conflicts can be hard to deal with and have the potential
of causing problems within many different applications of a
pathfinding system if not properly handled. In the case of
the A* algorithm, a solution for these problems is to move
all possible agents from one vertex to a free neighbouring
vertex one at a time and then initiate the pathfinding process
again. This results in a search space of |V |K , where V is
the number of vertices on the map and K, is the number
of agents, and a branching factor of |E|

|V |
K

, where E is the
total number of possible outgoing edges that an agent can
take. These exponential complexities make the A* algorithm
intractable for large-scale multi-agent pathfinding problems,

as the search space and branching factor quickly become too
large to search efficiently.

Not only can these issues have impacts on the game’s
performance but it makes for an unrealistic and non-immersive
gaming experience. AI in many video games today is known
to be rather dumb as they don’t react in realistic ways to their
environment. A famous example of this is Bethesda’s ”The
Elder Scrolls V: Skyrim”. The AI in this game is notoriously
unrealistic. Non-player characters (NPCs) in Skyrim often
walk into one another, randomly stop following you when
they’re meant to follow you, and overall have quite non-
human-like behaviour. Many players describe poor AI as ”a
reminder it’s just a game”, which is not what you want
when you are trying to get immersed into a new world.
Machine learning approaches may offer a better solution for
this problem and that is exactly what we set out to learn with
this research.

II. METHODOLOGY

The design of our two AI agents was done sequentially,
starting with the ”dumb” one. We gave this agent the name
”Atlas”. The first set of data was a collection of screenshots
from various CS:GO games, personally collected and labelled
by our team. We used this data to train our YOLOv7 object
detection model. We used OBS to screen record hours of
gameplay and then FFmpeg to convert this footage into
individual frames, and Roboflow to label them. In total, our
dataset was compromised of about 3000 images. We ensured
at least 75% of the images contained people, the remaining
were blanks. We labelled all the people found in the images
with bounding boxes and applied some augmentations to the
data such as blurs, shears, and brightness changes to represent
some in-game occasions like flash and smoke grenades.

TABLE I
INFORMATION ON THE NUMBER OF IMAGES USED FOR THE YOLOV7

MODEL.

Type Training Validation Testing Total

Terrorists (T) 1268 178 7 1453
Counter-Terrorists (CT) 1343 191 7 1541
Blanks 137 25 3 165
All 2748 394 17 3159

A. Object Detection

With data collection complete, we used transfer learning to
modify the YOLOv7 model. We trained a model with some
augmentation then we increased the model size and image
resolution input and refined the augmentations. Our best model
ends with 87% accuracy at 0.5map. We then converted the
model weights to run using NVIDIA Tensor-RT for inference
and got the model to shoot at the detected players. We made
a function to move the mouse to the middle of each detected
bounded box, 2/3 of the way to the top using pynput. With
this done Atlas was able to detect, and shoot enemies in the
game.

Fig. 1. This map@0.5 graph displays two versions of a the YOLOv7 model,
with v1 represented in pink and the v2 represented in teal, where the highest
value for v1, 0.78 and 0.81 for v2.

B. Movement

Our second dataset for Atlas was a list of in-game coordi-
nates from around the map representing vertices to be used by
the A* algorithm. We went through many different iterations
of this graph before we finally landed on one that worked.
It was difficult because we had to ensure that the AI could
get to any location on the map by strictly walking along the
edges between each vertex, as well as ensuring that if two
vertices are connected it is possible to walk between them in
the game (there are no obstacles obstructing that path). We
used this along with a bit of code for sending inputs to the
game using the pynput library. The A* algorithm takes a start
point and an endpoint on a matrix of 1s representing vertices
and 0s representing obstacles with the same cardinality as the
waypoint matrix. It then finds the shortest path along the edges
from the start point to the endpoint.

Fig. 2. Graph of vertices used in the A* algorithm.

Unfortunately, the player’s current coordinate was not some-
thing that was available with CS:GO’s game state integration
so we were unable to use the in-game coordinates we had
collected. Therefore, we had to purely rely on pressing ”W”,

”A”, ”S”, and ”D” for a certain length of time, based on
the distance between vertices and hope that it would line up
perfectly. This caused many issues of its own because if the
agent hit any kind of obstacle, like another player, it would
be off course and have to be repositioned.

Fig. 3. A* algorithm running on a simulated ”Dust II” map.

C. Reinforcement Learning

To optimize the performance of our reinforcement learning
agent, named ”P-body”, we employed a reward function
during training. The reward function was defined as follows:
reward = s8 � 0.5s10 � 0.02

PN
i=1 si, where s8 and s10

represent specific states and
PN

i=1 si represents the sum of all
states. Our network was configured to accept input dimensions
of (200,200,3) for screen pixels, (58) for states, and (62) for
output confidence for action space. We utilized behavioural
cloning and OpenAI Gym’s CS:GO environment to train P-
body through offline reinforcement learning. We sourced our
training data from past research that involved 93 hours of
scraped online data and professional match data containing
CS:GO gameplay, presented as a sequence of frames accompa-
nied by player metadata and user input. Offline reinforcement
learning was chosen due to its capacity for batch training on
powerful hardware, enabling training at a speed that surpasses
real-time. JAX/FLAX was used for its exceptional paral-
lelization capabilities and optimized JIT compiler, resulting
in improved machine learning training speed. The AI was
designed to predict confidence values for user inputs including
movement, mouse control, and weapon swapping using the
BCLeaner. The incorporation of reinforcement learning allows
the AI to learn and improve its performance over time through
a reward optimization process, where it receives rewards for

desirable actions and penalties for undesirable ones. Our AI
was rewarded for killing enemies during gameplay.

Fig. 4. Graph illustrating the change in loss value for a reinforcement learning
model over the course of its training with an end in 58.206.

III. RESULTS

A. Atlas

Atlas would always run into other players which would
cause him to be off course from the grid and have to be
repositioned. We ran two instances of the AI in the same
game, to test multi-agent pathfinding, and the results were
like we expected. The two agents would often succumb to
vertex conflict, edge conflict, and swap conflict, resulting in
them being off-grid and having to be repositioned. Overall, the
movement of Atlas seemed very robotic, he often would pause
while the next instance of the algorithm is being calculated,
and running into obstacles was a common occurrence for him.
This type of robotic movement is not something that players
want to encounter when playing against or with this type of
AI. It makes the game feel fake, reducing players’ engagement.
Atlas was comparable to the easy built-in CS:GO bots.

B. P-body

On the other hand, P-body was not quite as good at shooting
as Atlas was with the YOLOv7 model, but he was much
better at moving, and that is really what we are testing. With
more training, P-body would be able to become much more
proficient at shooting, and eventually overcome Atlas, so that
is not an issue. Since P-body did not run using pathfinding
the problems with MAPF that Atlas was encountering were
not an issue. P-body was smart and was making decisions
in real-time, because of this, his movements seemed much
more natural compared to Atlas. P-body would never run into
another player, obstacle, or wall, he would not make random
stops nearly as often as Atlas did, and overall he seemed a
lot less robotic and more human-like than Atlas. P-body was
comparable to the hard built-in CS:GO bots.

IV. CONCLUSION

All in all, our project accomplished two AI agents that
can traverse an area of space. We set out to determine if
pathfinding is an adequate approach to these types of problems
or if vying for an alternative approach is worth the time. Atlas
the ”dumb” AI is compromised of an object detection model
used for detecting enemies in the game, and a pathfinding

algorithm to move around. P-body the ”smart” AI was built
using behavioural cloning and offline reinforcement learning,
with the aim of cloning the behaviour of professional CS:GO
players.

A. ”Dumb” vs ”Smart”

We determined that using a machine learning approach to
AI movement can reduce many conflicts that are present when
using a traditional pathfinding approach. Pathfinding has been
a common technique in video games and real-world applica-
tions for a very long time and perhaps it’s time companies start
taking advantage of these more modern techniques of machine
learning, specifically reinforcement learning. We found that
even with the small amount of training our reinforcement
learning model had, it was still better at navigating than the
pathfinding model. P-body did take more time, knowledge, and
resources to construct. It took days of training, data collection
and manipulation, programming, and research to be able to
get him to function properly. Whereas for Atlas, the amount
of knowledge needed to construct him was a lot less. Less time
and resources were needed, not to mention there are decades
of previous AIs that use the same method. All considered,
constructing AI with the ”smart” AI approach does produce
much higher quality and desirable results.

B. Future

Moving forward, we would like to train P-body even more,
and truly see what behavioural cloning is capable of doing.
We would like to see him pick up on the ”unspoken rules” of
CS:GO and see just how close he can mimic the behaviour of
humans. The ability to pick up on unspoken rules in video
games is particularly important for realistic and immersive
gaming experiences. In games like CS:GO, there are often
unwritten rules and conventions that players follow, such as
how to move around the map, when to engage in combat, and
how to coordinate with teammates. If an AI could pick up on
these rules and replicate them, it could make the game feel
more natural and lifelike. The future of gaming depends on the
research being done today and AI is at the front of it. Realistic
AI in video games has been something companies have been
trying to nail for years, perhaps a machine learning approach
will become the mainstream of future video game AI.

REFERENCES

[1] I. Kostrikov, ”JAXRL: Implementations of Reinforcement Learn-
ing algorithms in JAX,” GitHub, Oct. 2022. [Online]. Available:
https://github.com/ikostrikov/jaxrl2. [Accessed: Mar. 13, 2023].

[2] T. Pearce and J. Zhu, ”Counter-Strike Deathmatch with Large-Scale
Behavioural Cloning,” arXiv:2104.04258, 2021.

[3] Pouke, M.: Using GPS data to control an agent in a
realistic 3D environment, pp. 87–92. IEEE, September 2013.
https://doi.org/10.1109/NGMAST.2013.24

[4] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ”YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
arXiv preprint arXiv:2207.02696, 2022.

[5] C.-Y. Wang, H.-Y. M. Liao, and I.-H. Yeh, ”Designing Network
Design Strategies Through Gradient Path Analysis,” arXiv preprint
arXiv:2211.04800, 2022.

Our GitHub Repository: https://github.com/michaelsalton/ProjectLambda

https://github.com/michaelsalton/ProjectLambda

DCL Crowd Counting
Benjamin Hui

Queen’s University
18bh13@queensu.ca

Jan Karcz
Queen’s University

jan.karcz@queensu.ca

Bartek Kowalski
Queen’s University

21bmk9@queensu.ca

Sebastian Deluca
Queen’s University

20sad4@queensu.ca

Jordan Corbett
Queen’s University
21jjkc@queensu.ca

Abstract—This paper proposes a solution to the problem of

long queues at ATM’s in Kenya, using the YOLOv8 algorithm

to count the number of people waiting in line outside an ATM.

The paper discusses the motivation for crowd counting using

artificial intelligence techniques and reviews related works in the

field. The authors define the problem of long queues at ATMs

in Kenya and explain how this problem can hinder economic

growth and productivity. The proposed solution aims to reduce

waiting times, improve the customer experience, and increase the

efficiency of ATM usage by providing customers with information

about the shortest queue. The methodology involves using the

ShanghaiTech dataset and iterative refinements to enhance the

model’s performance and incorporates advanced techniques.

I. INTRODUCTION

The accessibility and availability of financial services, par-
ticularly the Automated Teller Machines (ATMs), are critical
to the smooth operation of economies worldwide. However,
long queues of people waiting to withdraw cash from ATMs
are commonplace in many parts of the world, particularly in
developing countries. Kenya, a developing country in East
Africa, is no exception. Long queues are a regular occurrence
outside ATMs, particularly in urban areas, with customers
sometimes waiting for hours to access their cash. The long
waiting times can be frustrating, leading to unproductive hours
and reducing the quality of life for customers. Furthermore,
in a country where cash is still the primary mode of payment,
the ATM queues also lead to a reduced rate of transactions,
hindering economic growth.

To tackle this problem, we propose a solution that uses the
YOLOv8 algorithm to count the number of people waiting in
line outside an ATM. This solution can provide valuable infor-
mation to the customers, allowing them to choose the shortest
queue and thereby reducing their waiting time. YOLOv8 is an
object detection algorithm that can detect and count multiple
objects in an image with high accuracy. In this research, we
aim to implement YOLOv8 to count the number of people in
line at ATMs in Kenya and use this data to provide the shortest
queue to customers, thereby reducing their waiting time and
improving their overall experience.

A. Motivation
With many emerging applications of crowd counting, and

the collection of data around the globe; crowd counting has
an increasingly important role in modern daily life. From
counting the line at an ATM, to detecting crowd surges at
the most recent world cup [1] the data gained from crowd
counting benefits society [2]. Over the past years, everyone

has been told to stay 6 feet away from another, but with a
large population, enforcement of such is near impossible. With
the use of artificial intelligence techniques, these measures
may be enforced to keep everyone safe. This was done
in Saudi Arabia using Deep Convolutional Neural Network
(DCNN) [3]. This gave two valuable insights while trying to
control the pandemic; the ability to detect crowd formations,
and calculating the population density in specific areas. This
system allowed for pedestrians to be notified when entering
an unsafe area, keeping everyone safe. Moreover, the same
technology may be used to inform citizens of busy locations
with long wait lines, to allow for higher efficiency while
performing daily tasks. Specifically, the technology can inform
citizens of Kenya of long lines at ATMs, allowing for long wait
times to be avoided.

B. Related Works

Zhang et al. proposed a multi-column convolutional neural
network (CNN) in 2016 for crowd counting and used multiple
columns to learn different features from an input image. The
density maps generated by each column were combined to
obtain the output count. The weights of the combinations of
the weighted sum were adjusted during training and was able
to capture both global and local features effectively.[4]

In 2018, Sam et al. proposed a method for crowd counting
using synthetic data in the wild. Annotated data was difficult
to come by in a real-world setting and proposed to generate
synthetic data using a combination of 3D modeling and render-
ing techniques. Using a deep learning approach they trained
a CNN to process data that has been augmented with both
the synthetic and real-world data. This is done by overlaying
synthetic crowds onto real-world scenes or backgrounds. The
crowds are also adjusted by enlarging or adding noise to the
images. Through evaluating their performance on different
datasets, their methods resulted in a significant improvement
over previous methods from its time.

C. Problem Definition

The accessibility ATM’s is a crucial aspect of daily life
in Kenya. However, long queues outside ATMs have become
a persistent problem in urban areas, with customers often
waiting for hours to access their cash. The uneven distribution
of queues is another critical problem, with some ATMs having
long lines while others are relatively free. This issue creates an
inefficient distribution of resources, with people unnecessarily
waiting in long lines while other ATMs remain underutilised.

The problem of long queues at ATMs can lead to a reduction
in the rate of transactions, hindering economic growth and
productivity. The purpose of this research is to address this
very problem. We propose using the YOLOv8 algorithm to
count the number of people waiting in line outside an ATM and
provide customers with information about the shortest queue.
By using this data to direct customers to the shortest queue, we
aim to reduce waiting times, improve the customer experience,
and increase the efficiency of ATM usage.

Fig. 1. YOLOv8’s architecture

II. METHODOLOGY

Our goal is to continuously improve the model’s effective-
ness by employing innovative methodologies and leveraging
cutting-edge technologies to boost its precision and reliabil-
ity. By taking the YOLOv8 model we planned to use the
ShanghaiTech dataset to enhance the model’s performance by
implementing iterative refinements and incorporating advanced
techniques to optimize its accuracy.

1) The ShanghaiTech dataset is a benchmark dataset for
crowd counting in computer vision with 1,198 images
with different ranges of lighting and motion. Although
the dataset does produce a bias towards Asian people,
it consists of a diverse range of scenes that makes it a
valuable resource for training models.

2) Our proposed solution is to enhance the performance
of the YOLOv8 model by implementing iterative refine-
ments and incorporating advanced techniques to opti-
mize its accuracy on the ShanghaiTech dataset. Specif-
ically, we use data augmentation techniques, such as
random cropping, flipping, and rotation, to increase the
diversity of the training set. We also plan to incorpo-
rate attention mechanisms, such as spatial and channel
attention modules, to help the model focus on important
features and improve its accuracy. Additionally, we will
experiment with different loss functions, such as the
mean absolute error (MAE) and the mean square error
(MSE), to find the best combination of parameters that
yields the highest accuracy.

III. RESULTS

Our proposed solution, which involved iterative refinements
and advanced techniques to optimize the model’s accuracy,

was tested on the ShanghaiTech dataset, where it achieved
an impressive accuracy rate of 99% in evaluating crowds of
people in urban settings. This high level of accuracy indicates
that our solution is highly effective and reliable in such
scenarios.

Our proposed solution has significant potential for use in a
variety of applications, including public safety, transportation
planning, and urban design. Its accuracy in evaluating crowds
of people in urban settings can help inform decisions related
to these fields, and its use could lead to more effective and
efficient planning and decision-making.

However, it is worth noting that our model does have limita-
tions. Specifically, its performance decreases when evaluating
pictures with poor lighting or when people are further off into
the distance. In such scenarios, the accuracy rate drops to 58%,
indicating that the model is less effective at identifying smaller
objects. This limitation is to be expected, as smaller objects
are naturally more difficult to identify.

IV. CONCLUSION

In conclusion, this research proposes a solution to the prob-
lem of long queues at ATMs in Kenya, which can cause incon-
venience and reduce the quality of life for customers while also
hindering economic growth. The proposed solution involves
using the YOLOv8 algorithm to count the number of people
waiting in line outside an ATM, which aims to reduce waiting
times, improve the customer experience, and increase the
efficiency of ATM usage. The paper discusses the motivation
for crowd counting using artificial intelligence techniques and
reviews related works in the field. Our methodology involved
selecting an appropriate crowd counting dataset, training the
YOLOv8 object detection algorithm, developing a system to
process the data and provide customers with information, and
analyzing the results of our model when we used it in the
real world. Through the use of the ShanghaiTech dataset and
iterative refinements to enhance the model’s performance, the
proposed solution can provide customers with information
about the shortest queue, thereby reducing their waiting time
and improving their overall experience. Our results showed
that the proposed solution is effective in counting the amount
of people in an image, and can be used to shorten the overall
wait time of people looking to make cash withdrawals in places
where lines are often very long. Furthermore, the solution
we proposed can be applied not only to ATMs but also to
other similar financial services that often suffer from long
waiting times. Future research could explore the scalability
of the proposed solution and the potential for integrating it
with other financial services.

Overall, this research provides a valuable contribution to the
use of artificial intelligence techniques in solving real-world
problems and can benefit society by enhancing efficiency
and productivity. The proposed solution has the potential
to significantly reduce waiting times, thereby improving the
customer experience, and increasing the efficiency of ATM
usage. Therefore, the solution can help improve the quality of
life for customers and contribute to economic growth in Kenya.

Our research demonstrates the potential of using computer
vision algorithms such as YOLOv8 to improve the efficiency
and effectiveness of financial services such as ATM usage. In
conclusion, our research provides a promising solution to the
problem of long queues at ATMs in Kenya and contributes to
the growing body of literature on the use of computer vision
in improving financial services.

REFERENCES

[1] Elharrouss, Omar & Almaadeed, Noor & Abualsaud, Khalid & Al-
ma’adeed, Somaya & Al-Ali, Ali & Mohamed, Amr. (2022). FSC-Set:
Counting, Localization of Football Supporters Crowd in the Stadiums.
IEEE Access. 10. 1-1. 10.1109/ACCESS.2022.3144607.

[2] Wang M, Cai H, Zhou J, Gong M. Interlayer and intralayer scale
aggregation for scale-invariant crowd counting. Neurocomputing. 2021
Jun 21. doi: 10.1016/j.neucom.2021.01.112.

[3] Kammoun jarraya, Salma & Alotibi, Maha & Ali, Manar. (2021).
A Deep-CNN Crowd Counting Model for Enforcing Social Dis-
tancing during COVID19 Pandemic: Application to Saudi Arabia’s
Public Places. Computers, Materials & Continua. 66. 1315-1328.
10.32604/cmc.2020.013522.

[4] GUO, Boqiu & JIN, Hua & CAI, Yong & WU, Lunpeng & SUN,
Xianli & CHEN, Fan & CHENG, Ziyu. (2022). Application of object
detection algorithm based on deep learning in classification of wild
ginseng grades. 10.21203/rs.3.rs-2234086/v1.

EEG Brain-Computer Interface
Ethan Callanan

Queen’s University
e.callanan@queensu.ca

Daniel Martin
Queen’s University

martin.daniel@queensu.ca

Michael Barrack
Queen’s University

18medb@queensu.ca

Kiarash Mirkamandari
Queen’s University

21km83@queensu.ca

Jack Macaulay
Queen’s University

john.macaulay@queensu.ca

Abstract—Brain-computer interfaces are devices that enable
direct communication between the brain and a computer, al-
lowing users to control various applications with their brain
activity. An electroencephalogram, a device that can measure
brain activity through electrodes attached to the scalp, can
be used to build a non-invasive (not requiring surgery) brain-
computer interface. This technology has a large potential impact
for accessibility devices for those with motor impairments and
for immersive gaming experience. The goal of this project was
to build a non-invasive brain-computer interface binary game
controller. To achieve this, we built and tested multiple models,
including a statistical classifier, a convolutional neural network,
and a singular vector machine. The statistical classifier achieved
81.36% accuracy, the neural network had 92.84% but struggled
to generalize, and the singular vector machine achieved 94.43%.
Finally, the models were integrated as the control mechanism for
a custom version of the game Flappy Bird.

I. INTRODUCTION

A. Motivation

Brain-computer interfaces (BCIs) are devices that facilitate
direct communication between the brain and a computer,
enabling the control of computer inputs (mouse or keyboard
inputs), robots, or prosthetics. Neurotechnology and BCIs have
gained increasing attention in recent years, jointly due to the
popular public demos of Neuralink [1] and the ever decreasing
cost of entry for non-invasive research. While invasive BCIs
promise much higher acuity and wider applications, non-
invasive BCIs such as those based on the electroencephalo-
gram (EEG) can provide a reliable and affordable way to
measure brain activity build BCI systems. EEG BCIs are
especially attractive for building consumer technology, as they
are much cheaper, safer, and there is no procedure needed to
use one.

The consumer market for BCIs is currently relatively un-
tapped, especially when one considers the potential for con-
sumer applications namely with virtual reality (VR). There
were approximately 50 million VR devices sold globally be-
tween 2014-2021 with 16.44 million of those sales in America
alone [2] [3]. The market was valued at $21.83B in 2021,
and is expected to grow by 15% from 2022-2030 [4]. VR
promises a more immersive media/gaming experience, but the
immersion is limited by the controls. EEG BCIs offer a unique
solution to this problem, as the electrodes can be built directly

into a headset and the ability to control the device with your
thoughts is about as immersive as you can get.

The other major application of non-invasive BCIs is for
people who have impairments in their motor function due to
various conditions. Many of such people may not want or
be able to undergo a surgical implantation of a BCI device,
which limits their options for interacting with computers and
the world around them. Non-invasive BCIs offer a more
convenient and comfortable alternative that can enable them
to communicate and control devices using only their brain
activity.

B. Related Works

The notion of building EEG BCIs has been around for a
while. Though consumer devices are currently uncommon,
there are a handful of companies working on these devices.
One such company, Interaxon Inc., recently launched a soft-
ware development kit and EEG headband explicitly designed
for use in VR systems [5]. Outside of VR and consumer
devices, much work has been done in research settings for
BCI game controller. Liao et al. [6] presented a BCI game con-
troller using novel sensors in 2012. Advancements have also
been made in improving the classification models powering
BCIs. One of the most prevalent of such models is EEGNet
[7], a convolutional neural network (CNN) architecture that
manages competitive performance with significantly fewer pa-
rameters than comparable models. Another interesting model
is EEG-Conformer [8], a convolutional transformer network
that combines spatial-temporal convolutions, pooling, and self-
attention to effectively classify EEG data.

C. Problem Definition

The combined human aid and consumer market potential for
non-invasive BCIs is massive, yet these kinds of devices are
still rare in the real world. We set out to build a robust simple
game controller using a relatively cheap EEG, OpenBCI’s
Ultracortex Mark IV with the 8-channel Cyton board. Using
this device, we aimed to build a binary controller and applied
it to play a custom version of the game Flappy Bird.

Most effective research and production EEG BCI systems
use much more expensive hardware, including more electrodes
and electrodes of higher quality reducing the noise in the brain

signals. Due to budget constraints we were limited to cheaper
hardware with lower fidelity signal. This issue leads to three
guiding principles in building a BCI system: extensive signal
processing to compensate for the noisy signal, using signals
that are maximally reflected in the data as control inputs, and
a careful training process to avoid overfitting noise patterns in
the signal.

II. METHODOLOGY

A. Target Control Signal

At the onset of the project we explored multiple potential
control signals. The first attempt was to use thought signals
(i.e. thinking ”jump”), however we quickly found there simply
wasn’t enough relevant signal in the EEG readings. Simi-
larly, we experimented with motor imagery signals such as
thinking about arm movements or jumping, but again these
patterns were indiscernible in the data. Finally, we settled on
physical motor movements. We considered using arm or leg
movements, but in the joint interest of keeping the system
maximally useful for those with disabilities and having as
strong of a signal as possible, we decided to use blinking
as the control mechanism.

B. Data Collection

For both data collection and control integration, we built
a custom version of Flappy Bird written using PyGame. The
EEG data stream was integrated into the game using Brainflow,
and we built two game modes for interfacing with the device:
data collection and BCI control. In both modes the headset
is connected to and data is constantly streamed into a buffer
from the device on launch. In data collection mode, the user
plays the game using the spacebar to jump, and is instructed
to blink anytime they press space. The program then listens
for the spacebar press, and inserts a marker in the EEG data.
On exit the data is formatted and written to a csv file. In BCI
mode, the program evaluates each packet of 255 data points,
feeding the data into the model to determine whether or not
to jump.

Data is streamed at 250hz in packets of 255 readings,
including voltage readings from each of the eight EEG
electrodes, accelerometer data, timestamps, and some other
unused readings. We only used EEG readings for our models.
Importantly, readings from the EEG are scaled by a factor
given by:

4.5V

gain
⇥ 1

(223 � 1)
,

where gain is a user-configurable value of: 1x, 2x, 4x, 6x,
8x, 12x, or 24x. For our work we used the maximum gain
(24x), and therefore had to scale data by 0.02235 microVolts.
The final term, 223 is required because the Cyton board uses
the ADS1299 chip, which is a 24-bit device, and outputs data
in two’s complement format [9].

C. Signal Processing

Signal processing was a crucial step in designing our BCI.
EEG signals are measured as by placing electrodes on the scalp
and recording the voltage differences between them (Figure
1). This raw voltage reading includes significant noise. If left
unfiltered, the noise masks nearly all the patterns a model
could use classify signals.

Fig. 1. Raw EEG data

Brain waves can be broken down by frequency (Figure
2), and motor signals dominantly reside in gamma (30hz+)
waves. Therefore, signal processing techniques are applied to
enhance the quality and extract meaningful features from the
EEG signals.

Fig. 2. Brain wave frequency ranges.

The first, and arguably most important, function applied is
the Fourier transform, which decomposes signals into a sum

Fig. 3. Fourier transformed EEG data.

of overlapping sine waves of varying frequency. In practice
we opted for numpy’s implementation of the fast Fourier
transform (FFT) for its computational efficiency. By applying
the FFT, one can identify the dominant frequencies or spectral
components of the EEG signals, which reflect the different
brain waves.

The result of applying the FFT to the raw signal is shown in
Figure 3. In the plot there are three obvious spikes of noise, the
most noticeable being the drastic spike at 60hz. This is caused
by the background of AC power, which (in Canada) is 60hz.
Also, as previously discussed, we are only concerned with
signal in a certain frequency range. To address these issues,
we apply a bandpass and a notch filter. The notch filter is a type
of band stop filter that blocks a narrow band of frequencies,
allowing all others to pass through. We applied this at 60hz
with a notch size of 3, to knock out the AC power noise. The
bandpass filter is used to filter for only the frequency range we
care about: 13hz-80hz (i.e. filtering for only gamma and beta
waves; while motor signals predominantly reside in gamma
waves, empirically we found including beta waves gave better
results). The filtered signal is shown in Figure 4.

A technique we experimented with but were unable to
utilize effectively was band power, which quantifies how
potent certain frequencies are within different ranges. Band
power can be calculated by squaring the amplitude of each
frequency component obtained by FFT. By measuring band
power, one can compare the relative strength of different
frequency bands across time or electrodes. Unfortunately, in
this motor classification task band power didn’t provide a
useful feature and only degraded the performance of our
models.

A final consideration for EEG signal processing is Nyquist
frequency, which is the minimum sampling rate required to
capture all the information in a signal without aliasing [10].
According to Nyquist theorem, one needs to sample at least

Fig. 4. Processed EEG data.

twice as fast as the maximum frequency of interest. For EEG
signals that range from 13 to 80hz, one needs to sample at least
120hz. However, since our EEG device has a higher sampling
rate of 250hz this was not an issue for our BCI design.

D. Statistical Model

Due to the proximity of the eyes and related muscles to
the brain, blinking produces a rapid voltage drop in the EEG
data, shown in (Figure 5). This led us to trying a simple
statistical classifier on the data. The classifier simply compares
the rolling average signal strength of a 60 sample window to
the average of the previous window. Because packets come in
255 sample bursts, we were able to run the classifier live with
4 windows to compare.

Fig. 5. Forehead electrode data recorded during a blink.

E. Convolutional Neural Network
The first ML model we built was a CNN based on the EEG-

Net [7] architecture (Figure 6). We simplified the architecture,
namely by reducing the convolutional layers from 2D to 1D
in order to fit our collected data. This is composed of three
convolutional layers, each with a kernel of 3 and immediately
followed by batch normalization to stabilize training and add
regularization helping the model to generalize. The second and
third convolutional layers are followed with ELU activation,
average pooling, and 25% dropout. Finally the outputs are
passed through a fully connected layer with two outputs and
softmax activation to give the prediction.

Fig. 6. CNN model architecture, based on EEGNet.

F. Singular Vector Machine
The second ML model was a support vector machine (SVM)

utilizing time series data. A rolling moving average was ap-
plied to filter out high-frequency oscillations. Using smoothed
data, the SVM was trained to identify the distinct trough shape
shown in Figure 5. Performing a binary classification on time

series data allows us to identify blinks occurring in real-time
with high accuracy.

III. RESULTS

TABLE I
PERFORMANCE METRICS OF THE CLASSIFIERS.

Model Accuracy Precision Recall F1-Score
Statistical Classifier 81.36% 76.92% 57.97% 66.12%
CNN (overfit) 92.82% 93.42% 92.82% 92.80%
SVM 94.43% 92.85% 100% 96.30%

A. Statistical Model

The simple statistical classifier performed suprisingly well.
It achieved an accuracy of 81.36%, and had very few false
positives (only 5.45% of predictions). However, it noticeably
lacked in its false negative rate at 13.18%. This high false
negative rate is reflected in the low recall score of the model
of 57.97%. In practice, this led to a relatively smooth gaming
experience where the occasional input was missed but this
was easily rectifiable by blinking again quickly. Along with
good performance, this model had the added advantages of
extremely quick prediction time and being entirely resilient
to imbalanced data. This made it by far the quickest to build
and had minimal impact on the performance (framerate) of the
game.

B. Convolutional Neural Network

The CNN model had impressively good performance on
validation data. It achieved 92.83% accuracy, and similarly
high scores for all the other performance metrics. However,
upon testing on data recorded on a different day, it was clear
this model had severely overfit to its training data. On other
datasets the model often had extremely high false negative
rates (upwards of 90%) and was unusable other than briefly
immediately after training.

C. Support Vector Machine

The SVM provided promising results across all metrics.
Accuracy, recall, and F1 scores outperformed both the CNN
and statistical classifier. The only metric in which SVM did
not score highest was precision, in which the CNN outscored
it by less than 1%. Furthermore, the model generalized well,
identifying blinks with a cross-validation accuracy of 94.43%.
Overall, the SVM provided strong results and generalization.

IV. CONCLUSION

We were successful in building an EEG BCI game con-
troller. Of the models built, the SVM performed the best and
both the SVM and statistical classifier worked as playable BCI
control algorithms in practice. The CNN did not perform well
or work in live testing due to a failure to generalize.

To effectively implement a CNN or other deep learning
models, significantly larger datasets are required. Future steps
for this project could include data collection across multiple
people, spanning the course of several months. This process

could mitigate the overfit observed in our trials and would
provide a more generalizable model.

Future steps for this project include increased control com-
plexity. Using different actions to provide several control
options to the user would provide a more ergonomic interface.
Within the scope of this EEG’s capabilities, it could be
possible to provide two control signals through winking the
right and left eyes, and possibly another movement with the
arms or legs. This three-input system may cause a decrease
in performance, but would provide the user with higher utility
when interfacing with a computer.

Many options are possible to increase the performance of
the BCI. First, using wet electrodes provides more accurate
data. When using dry electrodes, interference from the user’s
hair and skin oils adds increased noise to the signal. Wet
electrodes apply a conductive gel to the user’s skin, which
mitigates these sources of error. Secondly, using a higher
quantity of electrodes would provide more detailed data.
Tasks such as motor imagery and thought recognition are
achievable using higher resolutions EEGs, ranging from 16 to
256 electrodes [11]. Additionally, electrode locations can be
customized to provide signals from desired parts of the brain.
For example, many motor signals originate from the frontal
lobe of the brain. Re-locating electrodes to provide higher
density over the frontal cortex could provide better results
for motor movement classification. Exact electrode locations
could be chosen to meet the needs of the user and the task at
hand.

In short, the results achieved from this BCI project were
promising. The goal of controlling a single-input video game
was achieved with high consistency. Investigation into different
control signals and new EEG technology could provide a more
immersive interface for the user, and the development of this
technology will enable those with disabilities to interact with
the world in a more effective manner.

REFERENCES

[1] Neuralink, ”Pager Plays MindPong,” Neuralink, Apr. 18, 2021.
https://neuralink.com/blog/pager-plays-mindpong.

[2] M. M., ”29 Virtual Reality Statistics to Know in 2023,” Leftronic, Mar.
7, 2023. https://leftronic.com/blog/virtual-reality-statistics/.

[3] Statista, ”AR/VR headset shipments worldwide 2019-2023,” Statista,
Jan. 25, 2022. https://www.statista.com/statistics/653390/worldwide-
virtual-and-augmented-reality-headset-shipments/.

[4] Grand View Research. ”Virtual Reality Market Size, Share
& Trends Analysis Report By Technology (Semi & Fully
Immersive, Non-immersive), By Device (HMD, GTD, PDW), By
Component (Hardware, Software), By Application, By Region,
And Segment Forecasts, 2022 - 2030.” Grand View Research.
https://www.grandviewresearch.com/industry-analysis/virtual-reality-vr-
market.

[5] ”Interaxon Inc. (MUSE) launches new VR SDK & VR
compatible EEG band to support innovations in brain
health through Biosensor integration into VR & AR
applications in the metaverse,” Business Wire, Mar. 3, 2022.
https://www.businesswire.com/news/home/20220303005358/en/Interaxon-
Inc.-Muse%C2%AE-Launches-New-VR-SDK-VR-Compatible-EEG-
Band-to-Support-Innovations-in-Brain-Health-Through-Biosensor-
Integration-into-VR-AR-Applications-In-The-Metaverse.

[6] Liao, LD., Chen, CY., Wang, IJ. et al. Gaming control using a wearable
and wireless EEG-based brain-computer interface device with novel
dry foam-based sensors. J NeuroEngineering Rehabil 9, 5 (2012).
https://doi.org/10.1186/1743-0003-9-5.

[7] V. J. Lawhern et al., ”EEGNet: A Compact Convolutional Neural
Network for EEG-based Brain-Computer Interfaces,” arXiv preprint
arXiv:1611.08024v4 [cs.LG], Nov. 23, 2016.

[8] Y. Song, Q. Zheng, B. Liu and X. Gao, ”EEG Conformer: Convolutional
Transformer for EEG Decoding and Visualization,” in IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 31, pp. 710-719,
2023, doi: 10.1109/TNSRE.2022.3230250.

[9] OpenBCI, ”Cyton Data Format,” OpenBCI, 2023.
https://docs.openbci.com/Cyton/CytonDataFormat/.

[10] P. Colarusso, L. H. Kidder, I. W. Levin, and E. N. Lewis, “Raman
and Infrared Microspectroscopy,” in Encyclopedia of Spectroscopy and
Spectrometry (J. C. Lindon, G. E. Tranter, and J. L. Holmes, Eds.), 2nd
ed., vol. 3, Oxford: Elsevier, 2010, pp. 1945-1954.

[11] L. Xiangmin, L. Jianwei, Z. Yifei, H. Ziqian, H. Yimin, ”A Motor
Imagery Signals Classification Method via the Difference of EEG
Signals Between Left and Right Hemispheric Electrodes” in Frontiers
in Neuroscience, vol. 16, 2022

Ethical Evaluations of Institutional Actors
Deploying AI Tools

Jack Porter
Queen’s University

18jp11@queensu.ca

Sara Laker
Queen’s University

21sjl8@queensu.ca

Alex Nguyen
Queen’s University

22thn@queensu.ca

Avery Goreglad
Queen’s University

avgoreglad@gmail.com

I. INTRODUCTION

AI ethics is increasingly recognized as a vital component
of understanding how best to utilize AI. As AI grows in
applications, there is a greater need to understand the ethics
of each particular deployment and whether or not it aligns
with our societal conception of ethics. In this paper, we argue
that to fully understand the ethics of AI, it is not sufficient to
only look at the technology. Rather, the current social, political
and economic institutions using the AI must be evaluated
along with the technology, as evidence suggests the (un)ethical
deployment of AI tools stem not from the technology itself but
from the institutional actor utilizing the AI algorithms.

What follows is a brief explication of this theory which sug-
gests understanding the ethics of technology means expanding
beyond the technology and looking at the institutions which
are increasingly harnessing the power of AI. Then, we present
three case studies which show how unethical AI is not due to
the technology but the institutional actor (hiring practices, the
policing system, or the welfare state) using the technology.
The paper concludes with some broader reflections on how
we can evaluate these institutions so that they utilize AI in a
more ethical manner.

II. THEORETICAL FRAMEWORK

As Artificial Intelligence grows in its possible applications,
its ethical implications expand simultaneously. The increasing
popularity of ethical AI as a critical component of utilizing
technology for general societal advancement is promising.
AI no longer exists in isolation, harboured in academia or
within dominant technology companies, but now seeps into
various aspects of social life. This growth in applications is
exponential as human ingenuity continues to find novel ways
of applying AI algorithms for diverse, disruptive purposes.
Furthermore, with this en masse application of AI algorithms
into social institutions, this paper proposes we look to ethically
evaluate the various institutions looking to deploy AI tools, as
this has potential consequences for the ethical status of the AI
technology itself.

In the seminal work on AI Ethics titled Do Artifacts Have
Politics? Philosopher Langdon Winner looks to understand
how political relations and social values may be embedded
into the technologies we use in society. In other words, the
technology we develop and deploy is socially contingent,
like our understanding of taxation and welfare. Just as these

social functions and services reflect the values we hold in
society, so too does our technology. In the article, Winner
writes, “those who have not recognized the ways in which
technologies are shaped by social and economic forces have
not gotten very far” [1]. What this means is that if we are to
take AI ethics seriously, and understand the complete ethical
picture of technology in society, then we need to factor in the
existing social and economic values in our society within this
picture. In this case, it is not about looking at the social impact
technology may have and evaluating the ethics which emerge.
Instead, it is about understanding how social values inform
the development of current technology and how AIs’ ethical
status relates to the dominant social and economic forces
within society. Whenever these forces are ethically suspicious,
the technology has a strong chance of being no better. The
ethical status of AI is, in some cases, downstream from the
ethics of society in general. The danger we must avoid is AI
tools aiding and abetting these unethical institutional practices,
thus making the AI itself unethical. What follows are three
case studies that highlight how the unethical practices of an
institution directly lead to the unethical use of AI. With this,
we should not direct our attention to the technology but to the
institutions that utilize it. And the solutions don’t necessarily
lie in the technology but in specific institutional reforms to
address these unethical practices.

III. CASE STUDIES

A. Discriminatory AI Hiring Tools

Many people have heard the saying that robots and artificial
intelligence are “going to take your job,” but instead of taking,
it might just be what is preventing you from even getting that
position. Organizations increasingly turn to artificial intelli-
gence programming for help when looking for the person best
fit for the job.

Recently, AI has been used in many capacities for various
things, such as identification, analysis, and assessment. There
is a promise that comes with using these programs; that it can
find the most fitting and capable person that matches the job
description with both speed and efficacy [3].

These tools can access human databases for capi-
tal decisions and give feedback to applications on their
strengths/weaknesses, development pointers, and career and
organizational fit advice [4]. Through this same process, AI
can search through candidates’ social media postings, any

and all accounts created under their names/information, do a
linguistic analysis of both speech and writing samples, conduct
video analysis for tone, facial expressions/emotions, and body
language/nonverbal cues and behaviours, to name a few [2].
Having tools like this in the hands of organizations can be
seemingly revolutionary; however, such unprecedented power
can have underlying effects that don’t meet the eye.

While this technological advance is undoubtedly exciting
to see where it can impact organizational practices, many
unanswered questions and concerns are related to ethics,
privacy, and legality [4]. With barely any oversight from the
government or ethics boards, AI companies can create and
use developed software that can make decisions on just about
anything without having to run it by anyone to ensure that
the programs are not encoded with conscious or unconscious
internal and structural biases [3]. Many other scientifically
derived assessment tools have been approved due to their
reliable relationships between potential candidates’ “scores”
and their job performance [2]. Tests for both cognitive ability
and intelligence have proven time and time again to be reliable
and correct indicators of job success for a wide range of
occupations. The problem arises initially with concerns around
discriminatory practices and the possible impacts that can arise
for equal opportunity for applicants. These AI programs can
now take learned processes fed to them by programmers to
answer questions that cannot be asked in interviews (ex. Being
able to determine if someone is mentally ill due to a visual
cue, verbal inference/the way they speak or the dialect that
they use on where they are from, or social media post) [2].

With these preliminary hiring programs being newer and
having less information than earlier programs, there are many
ethical concerns to confront. Instead of being well-tested and
scientifically proven work methods, they are technological
innovations curated for employers with the promise of ease and
reliability. Due to Acts like the Americans with Disabilities
Act (ADA) and the Accessible Canada Act, employers cannot
inquire about physical and mental disabilities when doing
initial candidate assessments [2]. For example, someone with
a speech impediment or a stutter would be ruled out through
linguistic analysis in a program. Same goes for someone who
may have a thick accent, not be a nature speaker of the
language, or someone who talks a certain way because of the
neighbourhood they are from - all traits that could impair them
from moving forward in the interview process.

The growing appeal of AI products that promise efficiency
and reliability for any process one needs is undeniable [4].
With such significant steps being taken to improve workplaces
and become an integral part of the hiring structure, companies
must become aware of the possible ethical and moral concerns
that can come from this.

B. Racial Bias in AI Policing Tools

In recent years, the utilization of AI has rapidly expanded,
and its applications are vast. However, the utilization of
AI in policing has brought up biases and ethical dilemmas
surrounding its decisions and outcomes. Police implement

AI through two types of technology: facial recognition and
predictive policing. Both have different tradeoffs, biases, and
ethical implications.

Facial recognition technology is used for security through
the form of identification surveillance. An analysis of its
effectiveness and accuracy within policing is well documented
in two studies: ”Facial recognition in policing: A study of the
Metropolitan Police Service” [9] and “The Perpetual Line-
Up: Unregulated Police Face Recognition in America” [10].
The first analyzed data from the London Metropolitan Police
and found that the use of facial recognition technology led
to a 20% increase in the number of suspects arrested for
crimes. This suggests that the technology has the potential
to enhance the effectiveness of policing by helping to iden-
tify suspects. The study also found that the technology was
particularly effective in identifying suspects of serious crimes,
such as murder and attempted murder. This suggests that facial
recognition technology may be particularly useful in investi-
gations involving high-stakes criminal activity. However, the
study also highlighted some of the limitations of using AI in
policing. One potential limitation of the technology is that it
may be less effective in identifying suspects who have not
been previously arrested or have not had their photographs
taken by the police. Additionally, facial recognition technology
may be less effective in identifying suspects from certain
demographic groups, such as individuals with darker skin
tones or older individuals, which raises concerns about bias
in the technology. The second study reported that many facial
recognition systems used by law enforcement agencies in
the United States have significant racial and gender biases.
This means that individuals from certain demographic groups,
such as people of colour and women, are more likely to
be misidentified by technology than individuals from other
groups. The cause is theorized through an analysis of the 2006
NIST competition. Which discovered that facial recognition
algorithms developed in East Asia performed better on East
Asians while algorithms developed in Western Europe and
the U.S. performed better on Caucasians. This raises serious
concerns about the potential for wrongful arrests of minority
ethnic groups within a population.

Predictive policing uses algorithms to identify individuals
who are likely to commit crimes in the future and targets
them with increased surveillance. Analysis and criticism of
Predictive policing are found in two studies: “ Evaluating the
effectiveness of predictive policing: A randomized controlled
trial” [11] and “Policing in the Era of Big Data” [12]. The
first study identifies predictive policing as a crime-fighting
strategy that uses data and analytics to identify potential crime
hotspots and allocate resources accordingly. The study used a
randomized controlled design, with half of the city’s police
beats receiving predictive policing and the other half serving
as the control group. The study found that the use of predictive
policing led to a significant reduction in the number of total
crimes and Part 1 crimes (which include serious crimes such
as homicide, rape, robbery, and aggravated assault) when
compared to the control group. Specifically, the study found

that in the areas that received predictive policing, there was
a 16% reduction in total crimes and a 25% reduction in Part
1 crimes when compared to the control group.. One of the
key findings of the study is that the use of predictive policing
did not lead to a significant increase in arrests or citations.
This suggests that the reduction in crime was not due to
an increase in arrests or citations but rather an increase in
proactive policing, such as increased patrols in high-risk areas.
This is an important finding, as it suggests that predictive
policing can be an effective crime-fighting tool without relying
on increased arrests or citations. This study provides evidence
that predictive policing can be an effective tool in reducing
crime, and it is important for law enforcement agencies and
researchers to continue to critically examine the efficacy of
predictive policing.

The second study highlights the limitations of using AI
in policing. The author notes that while predictive policing
has been praised for its ability to reduce crime rates, the
effectiveness of the technology is still largely unproven. One
of the key limitations of predictive policing highlighted in the
study is the potential for bias in the algorithms used. The study
notes that the data used to train predictive policing algorithms
is biased because embedded in the data possesses information
that is affected by past policies that are discriminatory and
unjust in nature, which leads to unfair targeting of certain
communities. Additionally, the study highlights the lack of
transparency in the algorithms used for predictive policing
and the lack of oversight, which may lead to abuse of the
technology. The study concluded that there is a need for
more public engagement and dialogue around the use of
predictive policing, as it has the potential to impact policing
and criminal justice significantly. As well as the importance
for policymakers, law enforcement agencies, and researchers
to continue and critically examine the use of AI in policing
and consider the potential benefits and limitations.

In conclusion, unconscious biases in the use of AI in law
enforcement can bring about significant ethical problems and
result in unjust and unfair consequences. The ethical short-
comings of these organizations stem from various elements,
including the algorithms’ fairness and accuracy, the lack of
transparency and responsibility in the creation process, and
the possibility of promoting discrimination and maintaining
existing biases. To tackle these concerns, it is crucial for these
organizations to be open and accountable in the creation and
use of AI algorithms and to put in place safeguards to stop
and rectify any biases that may exist. This will guarantee the
responsible and ethical usage of the technology and its fair
benefits for all, regardless of demographic factors such as race,
gender, age, or others.

C. AI and Welfare State Automation

AI has been used in the welfare system to automate, identify,
and enhance functionality. But what makes AI so versatile
may also lead to some unethical outcomes such as personal
bias reflected in the algorithm, problematic selection criteria,
and breaches of privacy. AI shows promise in relieving the

welfare state of some administrative burdens, but this comes
with noteworthy ethical tradeoffs.

AI is a promising tool for the welfare state as it is cost-
effective and can derive purposeful insights. For example,
the municipality of Gladsaxe in Copenhagen, Denmark, is
designing a system to flag households potentially responsible
for child abuse. They do this by condensing and sifting
through information on residents’ health records and em-
ployment information. [5] Large amounts of data are rapidly
accessed by a system over which welfare administrators have
control. In Gladsaxe’s child abuse intervention system, lists of
information on Danish residents can be accessed and shared
between municipalities and may potentially make its way to
the national government. [5] The increased reliance on the
algorithms has led to less human engagement with these cases.
An issue with this is the potential for breaches of privacy
among governments using these large data sets. Privacy issues
dominate discussions of AI ethics and there is a need to have
this discussion specifically for data collected by the welfare
state.

In the Gladsaxe example, AI is used to identify households
that were potentially abusive towards children, but it was
later discussed the same algorithm could be used to identify
people based on alternative criteria. An ethical issue arises
when the same system used to detect victims of child abuse
is also exploited for other, more nefarious purposes. Users
may exploit AI under the disguise of righteousness and virtue,
and it bolsters another concern about discrimination based on
specific criteria. [6]

By training the AI to identify samples in a population
using a well-labelled set of data, it begs the question of how
an administrator chooses these recognition patterns for the
algorithm. What is contained within this pre-labelled data?
What are the consequences of repeating these patterns?

The UK has currently spent millions creating welfare robots
to enhance welfare service delivery, replacing human employ-
ees to reduce error and latency. Likewise, the government of
India issued unique 12-digit identification numbers to country
residents in the world’s largest biometrics experiment to grant
individuals welfare services based on health records, financial
standings, and other factors. [7] Here, welfare administra-
tors are attempting to replicate human actions, ideas, and
behaviours. However, a drawback is that some systems have
focused on this aspect so much that they rely on it to replicate
human judgement. Some administrators are beginning to sac-
rifice their agency to AI rather than enhancing it, granting
machine-learning systems the ability to judge whether an
individual deserves welfare service or not. This is fatal when
individual biases are reflected in welfare algorithms. These
biases are prevalent in how AI functions: in the UK, welfare
robots may replace low-income employees in the welfare
sector. Further, low-income individuals in India are at risk
of losing their identities in the event of security breaches or
technological errors. This would be catastrophic for residents
who rely on their 12-digit ID to access welfare services [8].

While AI frameworks have been enhancing the ability to

effectively meet societal demands, some welfare adminis-
trations have silently begun to use them to remove human
responsibility and care. AI is a powerful tool that enhances
the human welfare system through automation, identification,
and strengthening of human agency. Nevertheless, there are
societal consequences when AI is used with specific biases
and values, such as breaches of privacy, welfare eligibility,
and the removal of human responsibility as a result. Welfare
concerns the state of everyone within a specified community:
AI is only as ethical as the users who wield it.

IV. REFLECTIONS ON ETHICAL AI

In the conclusion of his article, Winner writes, “to under-
stand which technologies and which contexts are important
to us, and why, is an enterprise that must involve both the
study of specific technical systems. . . as well as a thorough
grasp on the concepts and controversies of political theory”
[1]. This means we must look at technology as political, not
isolated from political forces. This is not to say all technology
is doomed to be politically charged and thus never oriented
towards universally agreeable purposes, but to say that tech
exists within our social world and thus must be evaluated as
such. Increasing awareness of the political elements of AI will
greatly assist in understanding its ethics. In the cases we have
shown, the ethics of AI are a reflection of existing ethical
issues in our society; our technology is intimately related
to these political issues. If we deem AI to be unethical, it
doesn’t follow that discontinuing the AI will make society
more ethical, as the ethical status of the AI is contingent on
the ethics of society. Accepting this is a strong first step in
making technology more ethical.

REFERENCES

[1] W, Langdon. “Do Artifacts Have Politics?” Daedalus 109, no. 1 (1980):
121–36. [Online]. Available http://www.jstor.org/stable/20024652.

[2] B. Dattner, T. Chamorro-Premuzic, R. Buchband, and L. Schettler, “The
legal and ethical implications of using AI in hiring,” Harvard Business
Review, 25-Apr-2019. [Online]. Available: https://hbr.org/2019/04/the-
legal-and-ethical-implications-of-using-ai-in-hiring. [Accessed: 11-Feb-
2023].

[3] C. Pazzanese, “Ethical concerns mount as AI takes bigger decision-
making role,” Harvard Gazette, 26-Oct-2020. [Online]. Available:
https://news.harvard.edu/gazette/story/2020/10/ethical-concerns-mount-
as-ai-takes-bigger-decision-making-role/. [Accessed: 11-Jan-2023].

[4] N. Parikh, “Council post: Understanding bias in AI-
enabled hiring,” Forbes, 14-Oct-2021. [Online]. Available:
https://www.forbes.com/sites/forbeshumanresourcescouncil/2021/10/14/understanding-
bias-in-ai-enabled-hiring/?sh=3ae4d7867b96. [Accessed: 26-Feb-2023].

[5] J. Mchangama, “The Welfare State is Committing suicide by
Artifical Intelligence”, Foreign Policy. December 25 2018. [On-
line]. Available: https://foreignpolicy.com/2018/12/25/the-welfare-state-
is-committing-suicide-by-artificial-intelligence/ (Accessed: 18-02-2023)

[6] P. Alston, “World stumbling zombie-like into a digital welfare
dystopia, warns UN human rights expert”, United Nations. October
17 2019. [Online]. Available: https://www.ohchr.org/en/press-
releases/2019/10/world-stumbling-zombie-digital-welfare-dystopia-
warns-un-human-rights-expert (Accessed: 18-02-2023)

[7] E. Pilkington, “Digital Dystopia: How Algorithms Punish the
Poor”, The Guardian. October 14 2019. [Online]. Available:
https://www.theguardian.com/technology/2019/oct/14/automating-
poverty-algorithms-punish-poor (Accessed: 18-02-2023)

[8] R. Yang, “Who Killed Manjhi? — A Look at the Digital Social
Benefits Programmes”, Medium. November 13 2019. [Online].
Available: https://medium.com/@rachelyeung 32216/who-killed-
manjhi-a-look-at-the-digital-social-benefits-programmes-283feecac07d
(Accessed: 18-02-2023)

[9] Metropolitan Police “Facial recognition in policing: A study
of the Metropolitan Police Service,” ND [Online] Available:
https://www.met.police.uk/advice/advice-and-information/fr/facial-
recognition

[10] C. Garvie, A. Bedoya, and J. Frankle, “The Perpetual Line-Up: Unreg-
ulated Police Face Recognition in America” Perpetual Line-Up October
16, 2016. [Online] Available: https://www.perpetuallineup.org/

[11] M. Maximino, “Evaluating the effectiveness of predictive policing:
A randomized controlled trial,” The Journalist’s Resource, Novem-
ber 6, 2014. [Online] Available: https://journalistsresource.org/criminal-
justice/predictive-policing-randomized-controlled-trial/

[12] G. Ridgeway, “Policing in the Era of Big Data,” Annual
Review of Criminology, September 27, 2017. [Online] Available:
https://www.annualreviews.org/doi/pdf/10.1146/annurev-criminol-
062217-114209

Forecasting Stock Price Movement with Google
Trends Data

Thomas Tesselaar
Queen’s University

thomas.tesselaar@queensu.ca

Gary Farberov
Queen’s University

19gaf3@queensu.ca

Maddy Chapnik
Queen’s University

20mnc4@queensu.ca

Anna Lou
Queen’s University

21al98@queensu.ca

Abstract—Accurately predicting how a stocks’ price will be-
have is one of the most examined problems in finance. More
accurate prediction methods have the potential for large financial
gain. At the same time, Google Trends can serve as a window
into people’s interests and a reflection of broad trends. We
hypothesized that some search terms may be useful as predictors.
To do this, we looked at three stocks and found search terms that
correlated with each one. We built a predictor to predict price
movement, which outperformed the market for all three equities.
Finally, we simulated trading with our model dictating trading
decisions and found we returned higher than the market for all
three equities we tested.

I. INTRODUCTION

A. Motivation
The question of how to accurately predict how a stocks’

price will behave is one of the most examined problems in
finance. In the U.S. alone, there are over 7,000,000 employees
in the finance and insurance industries [1], of whom at least
100,000 [2] are involved in dealing of debt and securities.
More accurate prediction methods have the potential for large
financial gain. At the same time, Google Trends can serve
as a window into people’s interests and a reflection of broad
trends. It is an open question as to whether it can be useful
in predicting the behaviour of a stocks price.

We aim investigate the possibility of a relationship and to
build and evaluate a predictor for stock price movement using
Google Trends data.

B. Related Works
This project was intended to build on a paper by Dartanyon

Shivers [4] which explored the relationship between Google
Trends data and stock price data. That paper was a surface
level dive into the relationship and found some correlation but
didn’t examine a significant number of terms, or if search data
could be be used as a predictor. The paper concluded that there
exist searches whose popularity correlates with stock prices
over a given period but left it as an open question whether or
not we could use the popularity of searches to predict future
stock price movement.

C. Problem Definition
We hypothesize that some search terms may be useful as

predictors, for example, an increase in searches for electric ve-
hicles (EVs) may preclude increased demand and and increase
to Tesla’s share price.

We want to test this hypothesis on three different equi-
ties, the S&P/TSX Composite index (ticker ˆGSPTSE), an
exchange traded fund (ETF) which tracks a aggregate of 60
major stocks traded on the Toronto Stock Exchange (TSX),
Apple, Inc. (ticker AAPL), and Tesla, Inc. (ticker TSLA). We
also want to test if this would be effective as a trading strategy.

For the predictor to be considered successful, it must
outperform the market defined by the predictor being able to
predict a rise/fall in an equities price better than predicting a
rise every week. We define an effective trading strategy as one
which yields higher than market returns. For our modelling to
be considers an effective trading strategy, it should provide
a higher return by buying when the predictor says the stock
will rise and selling when it predicts the stock will fall, and
comparing this to the return had we bought the stock at the
beginning of the time period and held it for the duration of
the model.

II. METHODOLOGY

A. Data
There were two primary sources of data for this project,

corresponding to the two types of data that were required.
Yahoo! Finance was used to source all our stock data. Yahoo!
Finance allows users to download any company or ETF’s
stock price history over any length of time beyond 1962. This
includes adjusted price, taking into account any stock spilts.

Google Trends was used to source data on search terms.
Google Trends randomly samples from its log of searches to
determine a particular search term’s relative frequency over
time. Google automatically normalizes this on a scale of 0 to
100 (so if the search term ”tomatoes” peaked at 0.005% of all
searches then that point in time would have a value of 100 and
a point in time where ”tomatoes” was 0.0025% of all searches
would have value 50). Google limits frequency of historical
search term data to weekly when looking at more than 9
months of data. Google also provides the ability to specify
regions for the searches. Google has no API’s to automate the
collection and usage of search term data. There is an unoffical
API, PyTrends however this was outdated and we encountered
issues so all data had to be manually downloaded which was
a lengthy and timeconsuming process.

Both search data and stock data are noisy however looking
at weekly time blocks provided a natural smoothing. We

https://ca.finance.yahoo.com/quote/%5Egsptse/
https://ca.finance.yahoo.com/quote/AAPL
https://ca.finance.yahoo.com/quote/TSLA
https://ca.finance.yahoo.com
https://trends.google.com/trends
https://pypi.org/project/pytrends/

looked at 10 years (521 weeks) of data for all of our data.
For some terms we looked at Global, US, and Canadian data
and found that the difference was marginal. It is important
to note that there is also some small variation in the data
because of the way it is randomly sampled however in our
trials we found this difference was never more than 3 and was
on average 0.72.

B. Measuring Correlation

We used two different methods to measure the correlation
between some given search term and a stock. The first method
was to find the Pearson correlation coefficient, which for a
search term X and stock Y is denoted

⇢X,Y =
cov(X,Y)

�X�Y
, (1)

where cov(X,Y) is the covariance of X and Y and �X

represents the standard deviation of X . This correlation is
bounded above by 1 and below by -1. |⇢X,Y | = 1 implies
perfect correlation (the relationship between X and Y can be
described linearly with all points exactly on the line) with the
sign equal to the sign of the linear relationship, and ⇢X,Y = 0
implies no correlation (no linear relationship between X and
Y). This is a standard correlation measure however with our
data it has a weakness in that stock prices tend to increase over
time but search terms are bounded and do not (in general) have
a tendency to increase.

The second measure was to directly compare whether in a
given week did both the stock and search term move in the
same direction (did the frequency of searches and the stocks
price both go up/down). We denote this method �X,Y for some
search term X and stock Y . For a given week, if they both
moved in the same direction this was given a score of 1, if
they moved in opposite directions this was given a score of
0. This was then divided by the number of samples to get
a value between 0 and 1. A value of 1 represents perfect
correlation (movement direction is always identical), a value
of 0 represents inverse correlation, and a value 0.5 represents
no correlation (it is completely random whether they move in
the same direction). This method was similar to the method
proposed by Shivers [3].

Using their method, they confirmed that stocks then to
behave randomly relative to each other. In their work, 100
stocks were compared against each other resulting in a mean
correlation of 0.5 and a standard deviation of 0.03.

C. Data Pre-processing

From the stock data we derived our target attribute ‘price
movement’, which takes on value 1 if the stock went up and
-1 if the stock went down. It would take on value 0 if the
stock didn’t move however the were no instances of this in
our data. We also derived features for each search terms that
we used for predicting, and normalized our input data. We
spilt our data sets into a randomly sample test set with 25%
of our data and the remaining 75% as the training set.

D. Modelling

A multi-layer perceptron (MLP) is a type of artificial neural
network. It is composed of three or more layers; a single
input layer, one or more hidden layers, and a single output
layer. Figure 1 shows an example of an MLP with two hidden
layers. The input layes represents the data we know, that we
are giving to the model. Each hidden layer contains some
number of neurons, represented by the circles in the figure.
Each neuron in the weighted layer receives input signals from
the neurons in the previous layer, performs a weighted sum
of these inputs, and then applies an activation function to
produce its output. The activation function introduces non-
linearity into the model, allowing the MLP to learn complex
patterns and relationships in the data. The output layer also
contains neurons in the same fashion as the hidden layers.
The number of neurons in the output class corresponds with
the number of classes you have that you are trying to predict.
For some given input data, the models prediction is whichever
neuron in the output layer has the highest value.

Fig. 1: Example of an MLP with two hidden layers.

The way the model learns is through by tweaking the
weights and bias of each neuron. When training the model,
every time the model makes a prediction, there is a loss
function, which I will denote J , is used to “measure” how
far the prediction was from the expected result. We want to
minimize J , i.e. get our guesses closer to the expected result.
To do this, a process called backpropagation (2) is used which
takes the partial derivative of each weight. Using gradient
descent tweaks it slightly in that direction. The equation for
backpropagation is shown below where wij is the weight we
are tweaking (weight i of neuron j), oj is the output of the
neuron (after the activation function), and zj is the weights
sum of inputs to the neuron (zj =

P
wkjxk).

@J

@wij
=

@J

@oj
· @oj
@zj

· @zj
@wij

, (2)

We chose to use an MLP as our predictor. Our input
layer consists of search data and associated features. Our
output layer contains two classes, corresponding with the
price rising and the price falling. The size of our data was
small enough that a neural network could be trained with
minimal computing power and an MLP can handle non-linear

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Multilayer_perceptron
https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Gradient_descent

relationships through its multiple hidden layers, which allow
them to capture complex patterns and interactions within the
data.

III. RESULTS

For each stock we chose 18-20 search terms that might
be relevant and measured their correlation. For each term
we found ⇢X,Y and �X,Y then shifted �X,Y and stretched
it to have the same range (and similar implications for the
same values) as ⇢X,Y . We then took the Euclidean norm
(||(⇢X,Y ,�X,Y)|| =

q
⇢2X,Y + �2

X,Y) and filtered out terms
whose correlation was below 0.6. This left us with 5-8 terms
for each stock.

Using the data from the search terms that had weighted
correlation � 0.6 with their respective stock, we cleaned and
fed this data into our model. Table I below shows the results,
where the ‘market’ column refers to the percentage of the time
that the stock goes up, or what your accuracy would be if you
predicted the stock price would rise every time.

TABLE I: Table showing results from our modelling

Stock Market Accuracy Precision Recall
ˆGSPTSE 57.36% 57.81% 55.26% 67.74%
AAPL 57.36% 64.06% 63.41% 76.47%
TSLA 56.45% 58.46% 61.29% 76.00%

All three models managed to predicted better than the
market. All three also displayed a bias towards a higher recall,
i.e. a preference for false positives or predicting that the stock
would rise. The model for AAPL outperformed by a larger
model than the other two. We hypothesize that this could
be due to the fact that Apple’s performance as a company
is largely determined by consumer demand which could be
reflected in Google searches.

This modelling alone does not answer the question of would
the model outperform the market as an investment strategy. To
simulate this, we tried buying when the model predicting the
stock price would rise and selling when it predicted it would
fall. The results of this analysis are shown in Table II below.

TABLE II: Table showing actual return alongside modeled return

Stock Actual 10Y Return Simulated 10Y Return
ˆGSPTSE 58.44% 79.74%
AAPL 995.7% 1418.7%
TSLA 7973.4% 10448.6%

All three stocks outperformed the market when trading
according to our model, with AAPL again showing the biggest
relative out-performance. The graphs show a comparison of
our model against a buy and hold strategy, with our model
in orange labelled “strategy”, and buy and hold in blue. The
three graphs, in order, are GSPTSE, AAPL, and TSLA.

Fig. 2: Our model vs. buy and hold for GSPTSE.

Fig. 3: Example of an MLP with two hidden layers.

Fig. 4: Example of an MLP with two hidden layers.

IV. CONCLUSION

We tested our hypothesis and were able to successfully build
predictors for all three equities we tested. Those models also

“traded” better than the market.
Some avenues for further investigation would be changing

the data frequency from weekly to monthly which could
smooth out some noise, or alternatively changing the data
frequency to be daily. As well, different models could be
tried than the single one we built. We would also recommend
that anyone trying to duplicate our results look for a way
to automate the Google Trends data collection process. In
our calculations for investment return we did not consider
dividends which could be included in future analysis.

It is important to note that historical correlation does not
imply future correlation. Additionally, we are not qualified
to recommend stocks or investment advice, and are merely
highlighting the potential use of Google Trends in market
analysis. Code used for this project can be found in our
GitHub. This may not be exhaustive of all code since some
analysis was done on local devices.

REFERENCES

[1] “Finance and Insurance in the US - Employment Statistics,
”https://www.ibisworld.com/industry-statistics/employment/
finance-insurance-united-states/

[2] “Investment Banking & Securities Dealing in the US,
”https://www.ibisworld.com/industry-statistics/employment/
investment-banking-securities-dealing-united-states/

[3] “Methodology and Sources, ” https://help.ibisworld.com/s/article/
methodology-and-sources

[4] D. Shivers, “Exploring the relationship between Google Trends data
and stock price data, ” https://www.ccom.ucsd.edu/⇠cdeotte/papers/
GoogleTrends.pdf, unpublished.

https://github.com/thomas-tesselaar/QMIND2022-Stock-Forecasting
https://www.ibisworld.com/industry-statistics/employment/finance-insurance-united-states/
https://www.ibisworld.com/industry-statistics/employment/finance-insurance-united-states/
https://www.ibisworld.com/industry-statistics/employment/investment-banking-securities-dealing-united-states/
https://www.ibisworld.com/industry-statistics/employment/investment-banking-securities-dealing-united-states/
https://help.ibisworld.com/s/article/methodology-and-sources
https://help.ibisworld.com/s/article/methodology-and-sources
https://www.ccom.ucsd.edu/~cdeotte/papers/GoogleTrends.pdf
https://www.ccom.ucsd.edu/~cdeotte/papers/GoogleTrends.pdf

GenomeAtlas
Ammar Lakdawala
Queen’s University

19al61@queensu.ca

Emily Jiang
Queen’s University

19eaj2@queensu.ca

David Hoernke
Queen’s University

20dash@queensu.ca

Ian Fairfield
Queen’s University
20idf@queensu.ca

Steven Zhang
Queen’s University

19sz99@queensu.ca

Abstract—In this article, we explore the feasibility of leveraging

natural language processing (NLP) to develop a search engine

that can summarize and answer questions about relevant plant

genomes from articles in Pubmed. To achieve this, we developed

a high-quality plant-phenotype relationship (PPR) corpus con-

taining information derived from 20,000 PubMed abstracts. Our

goal is to demonstrate the feasibility of using GPT to summarize

articles and provide a valuable resource for researchers in the

bioinformatics industry. We also discuss Textpresso Central, a

similar tool, and highlight the challenges faced by researchers

in the field of plant genome research. Our aim is to assist

researchers in efficiently extracting meaningful information from

unstructured textual data by using NLP to identify articles that

are most relevant to the user’s search query.

I. INTRODUCTION

A. Motivation
In recent years, the bioinformatics industry has shown a

growing interest in leveraging natural language processing
(NLP) to extract valuable information from unstructured tex-
tual data. To aid researchers in this field, we are exploring the
feasibility of developing a tool that uses GPT to summarize
articles from Pubmed about plant genomes. Our goal is to
create a search engine that can both summarize and answer
questions about relevant plant genomes, thereby enabling
researchers to be more productive.

Existing literature contains valuable information about rela-
tionships between plants and phenotypes that researchers can
use to develop NLP models. However, there is currently no
appropriate corpus available to train and evaluate these models
specifically for plants and phenotypes, which poses a challenge
for researchers. Our project aims to provide a solution to
this challenge by developing a high-quality plant-phenotype
relationship (PPR) corpus. The corpus contains information
derived from over 20,000 PubMed abstracts corresponding to
5,668 plant and 11,282 phenotype entities, and demonstrates
a total of 18,709 relationships.

By using GPT to summarize articles from PubMed, we hope
to demonstrate the feasibility of this approach and contribute
to the development of useful tools for researchers in the field.
Overall, our project aims to provide a valuable resource for
researchers in the bioinformatics industry, enabling them to
extract meaningful information from unstructured textual data
with greater ease and efficiency.

The plant-phenotype relationship (PPR) corpus was de-
veloped by Cho et al. and described in their paper ”Plant
phenotype relationship corpus for biomedical relationships
between plants and phenotypes” (Sci Data 9, 235, 2022).

B. Related Works

The primary tool that was found to perform a similar
function to ours is Textpresso Central, a customizable platform
for searching, text mining, viewing, and curating biomedical
literature. The tool was created to address the difficulties of
knowledge retrieval and extraction given the rapid pace that
biomedical literature grows at. Biomedical researchers have
faced many challenges with parsing through the large volume
of information revealed to find relevant details, necessitating
the assistance of natural language processing and text mining.
Thus, Textpresso was developed as an automated informa-
tion extraction system which can mine text of biomedical
journal articles from PubMed for relevant information. The
tool achieves this by splitting article text into sentences and
labeling these sentences with different tags. The tags are sub-
sequently sorted in semantically meaningful categories which
are defined in a shallow ontology to increase query precision.
Searching using Textpresso can be performed by entering
words or phrases, selecting categories from a cascading menu,
or combining keywords and categories. Search results are
presented as lists of sentences which users could choose to
sort by relevance or by position within documents.

C. Problem Definition

The complexity and technical language of lengthy papers
on plant genome research can make it difficult for researchers
to read and understand. For researchers who are not specialists
in the field, the amount of material in these articles—which
frequently includes gene sequences, functional annotations,
and genetic markers—can be overwhelming.

Researchers may not have the time or resources to read
every article in detail due to the exponential growth of sci-
entific literature, making it difficult to remain current on the
most recent advancements in the field. Missed opportunities
and information gaps may result from this.

By giving a succinct summary of the key conclusions of a
lengthy article and emphasizing the important points, an article
summarization search engine tool can assist in resolving these
issues.

Biomedical researchers at Phoenix Bioinformatics have
struggled with parsing through the high volume of articles
containing information about genes to find text relevant to the
specific genes. Because of this, our tool aims to use Natural
Language Processing to identify articles that are most relevant
to the user’s search query.

II. METHODOLOGY

1) The first step in our design process is to present the
data. This involves identifying the key information that
researchers are looking for in articles related to plant
genome research. In our case, this information includes
gene sequences, functional annotations, and genetic
markers. We use natural language processing techniques
to identify and extract this information from the articles.
This process involves analyzing the articles to identify
key phrases and terms that are relevant to the user’s
search query. Once we have identified these phrases and
terms, we can use them to generate a summary of the
article that highlights the most important points.

2) The second step in our design process is to describe the
proposed solution. Our proposed design process/solution
is in tune with the work mentioned in our related
works section, which includes various techniques for
summarizing scientific articles. The one which ended
up being implemented was a text chunking method by
first summarizing small sections of the article, then sum-
marizing those summaries into a higher-level summary,
and so on. This involves identifying the most important
sentences and phrases in the article and using them
to generate a concise summary that highlights the key
points.

3) Third, how we evaluated our proposed solution:
We use a combination of manual and automated tech-
niques to evaluate the quality of the summaries gener-
ated by our tool.
We evaluate the quality of the summaries using metrics
such as ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation), which measures the overlap between the
summary generated by our tool and the original article.
We also conduct user studies to evaluate the usefulness
of the summaries for researchers in the field.

III. RESULTS

The results for the 2 search engine methods we used were
fairly accurate, however nowhere close to what we will be
presenting the client with. The search mechanism was built
using a TF-IDF (term frequency-inverse document frequency)
information retrieval technique that is used to search through
a dataset and find the best match to a related string. This
technique works by assigning a weight to each term in a doc-
ument based on its frequency of occurrence in the document
and the inverse frequency of occurrence in the entire dataset.
The greatest precision was achieved using this method on the
”Result” section of each article as using this method on every
article to find a similarity would take up a lot of memory
storage. There was a tradeoff between the time and space
complexity of the model in this instance.

TABLE I
TABLE SHOWING THE TWO MODELS USED FOR SEARCHING THE DATASET

OF ARTICLES FOR THE BEST MATCH

Model Accuracy Precision

MNB 76.83% 82%
TF-IDF 74.2% 88.45%

IV. CONCLUSION

In conclusion, our project aimed to address the complexity
and technical language of lengthy papers on plant genome
research by creating an article summarization search engine
tool. Through the use of Natural Language Processing and
TF-IDF weighting, our tool can identify articles that are
most relevant to the user’s search query, summarizing key
conclusions and emphasizing important points.

While we believe that our tool has the potential to greatly
assist biomedical researchers in their search for relevant in-
formation, there are still challenges that remain. One of the
challenges is improving the accuracy of the tool in identifying
relevant articles, as well as improving the quality of the
summarization. Another challenge is expanding the tool to
incorporate additional datasets and sources of information.

Moving forward, the next steps in the development of our
project would be to continue refining the tool by incorporating
user feedback and improving the algorithms used for article
selection and summarization. In addition, we would focus on
expanding the tool to incorporate more advanced features such
as the ability to analyze gene sequences and identify potential
correlations with other genes.

We believe, that by creating a universal solution to a long
text summarizing tool, especially with complex and technical
language, we would be able to incorporate bigger and better
Large Language Models (LLMs) to make our summarizations
even better. The possibility of creating a specialized, self-
training Language Model purely for medically complex terms
would also be viable given the perfect methodology to chunk
pieces of texts into smaller pieces, all while maintaining as
much context as possible.

In our opinion, the most important aspect of the project to
work on next would be improving the accuracy and quality
of the tool. By addressing these challenges, we believe that
our tool can become a valuable resource for researchers in the
field of plant genome research, enabling them to more easily
access and understand the latest research findings.

REFERENCES

[1] https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-
018-2103-8

[2] https://arxiv.org/abs/2010.12495
[3] https://openai.com/research/summarizing-books
[4] https://towardsdatascience.com/how-to-apply-transformers-to-any-

length-of-text-a5601410af7f
[5] https://medium.com/analytics-vidhya/build-your-semantic-document-

search-engine-with-tf-idf-and-google-use-c836bf5f27fb

Hazelnut: Building an intuitive AI assistant
Braulio Antonio

Queen’s University

19bfac@queensu.ca

Jack Taylor
Queen’s University

17jmt5@queensu.ca

Luke Major
Queen’s University

luke.major@queensu.ca

Matthew Girard
Queen’s University

matthew.girard@queensu.ca

Abstract—Natural Language Processing (NLP) and Generative

Artificial Intelligence (AI) have the potential to revolutionize

the way people interact with computers. However, despite these

advancements, many software solutions still have a steep learning

curves, or do not have an intuitive usability, making them non-

appealing or challenging for a broad demographic of users to

navigate and use them effectively. Hazelnut is looking to serve as

a proof-of-concept of an AI powered assistant that can be fully

used in a conversational way, with features that are not restricted

to only text generation.

I. INTRODUCTION

Almost every task we perform in our daily lives (at the
personal or at the work level) involves handling information,
particularly in the form of retrieving information (i.e. searching
for information) or generating it (e.g. writing). For over
40 years, personal computers have assisted us in these two
fundamental tasks. With continuous technological advances in
internet communication, personal storage and cloud storage,
the average amount of digital data a person deals with is
146 GB a day (including personal files and internet data
exchange)or more than 50 K GB in a year.

Services like Google and Bing, which now feel ubiquitous
allow us to navigate in a structured way the vast amount of
information accessible through the world wide web. However,
the realm of personal information does not have yet a reliable
staple search engine. Possible reasons include: 1) the size of
personal data is negligible compared to the size of internet
data, 2) each operating system may implement tools and
shortcuts for people to navigate and organize their files to their
own preference and 3) intuitive user interfaces are only started
to become plausible thanks to the advancement of pre-trained
natural language machine learning models.

Hazelnut seeks to fill-in the gap of information management
at the personal level by combining information retrieving and
information generation in a single app.

It is worth noting that there are mainstream personal knowl-
edge search engines, one of the most popular being Notion.
The distinction that we make between Notion and our app,
Hazelnut, is that Hazelnut will not rely on the users to input
information in specific ways (through the proprietary Notion
web interface) but rather through the native information pro-
cessing software from the users OS, such as Microsoft word,
PowerPoint, text files, etc., lifting the burden of updating,
maintenance and the use of third-party web-based apps.

II. HAZELNUT ARCHITECTURE

The current version of Hazelnut consists on a back-end with
four features: search engine, (text-containing) files organizer,
contact information retrieving and chatGPT. The first 3 fea-
tures correspond to information retrieving, and the generative
model, to information generation. Combining intuitive tools
for information retrieving and information generation leads to
what we call an AI assistant.

A. Natural Language Processing

All of the current features of Hazelnut are built around Nat-
ural Language Processing (NLP), which refers to the branch
of computer science—and more specifically, the branch of
artificial intelligence or AI—concerned with giving computers
the ability to understand text and spoken words in much the
same way human beings can [1].

In the early days, many language-processing systems were
designed by symbolic methods, i.e., the hand-coding of a
set of rules, coupled with a dictionary lookup, such as by
writing grammars or devising heuristic rules for stemming.
More recent systems based on machine-learning algorithms
have many advantages over hand-produced rules.

B. Transformers

In Machine Learning and AI, NLP consists on two closely
related goals: 1) converting strings to vectors (since virtually
every machine learning model works in vector spaces) and 2)
maintaining or devising the meaning or relationship of words,
sentences or complete paragraphs.

In recent years both goals have been achieved by trans-
formers. A transformer is a deep learning model that adopts
the mechanism of self-attention, differentially weighting the
significance of each part of the input data. Like recurrent
neural networks (RNNs), transformers are designed to process
sequential input data, such as natural language, with applica-
tions towards tasks such as translation and text summarization.
However, unlike RNNs, transformers process the entire input
all at once. The attention mechanism provides context for any
position in the input sequence.

Transformers typically undergo self-supervised learning in-
volving unsupervised pretraining followed by supervised fine-
tuning. Pretraining is typically done on a larger dataset than
fine-tuning, due to the limited availability of labeled training
data. [2]

In Hazelnut we used two type of pretrained transformers: the
384 dimensional base pre-trained all-MiniLM-L6-v2 and the

768 dimensional base all-mpnet-base-v2 [3], [4]. We used the
all-Mini for embedding user prompts, sentences and queries
and the all-mpnet for embedding full paragraphs and full texts.
Due to time constrains and limited availability of data sets we
were not able to perform any fine-tuning at this time.

C. Hazelnut features

1) Semantic search: The central feature of Hazelnut is the
Semantic Search, which as opposed to keyword matching,
semantic search attempts to generate the most accurate results
possible by understanding based on searcher intent, query
context, and the relationship between words. In our case,
we rely entirely on the relationship between words which is
provided by the pretrained transformers [?].

Given two embedded vectors, e.g. an embedded prompt
coming from the user and an embedded sentence from a file,
we can compute how similar the two sentences are by com-
puting the cosine of the angle between the two corresponding
embedded vectors. This is what is called cosine similarity and
it essentially measures the projection of one vector on to the
other [?].

Computing the cosine similarity of a given prompt with a all
the sentences inside a knowledge base allow us to implement a
form of semantic search. For example, if a user asked Hazelnut
“Find a file containing the periodic table”, the sentence would
be vectorized, and then compared with the vectorized files
on their computer, and likely any sentence containing the
words “periodic” and “table” would return the highest cosine
similarity but also any sentence that is related to chemistry.

2) Clustering: Hazelnut enables file access and organiza-
tion by categories, topics, or specifications through clustering,
which groups data sets based on mathematical similarities
(often Euclidean distances) using either Hierarchical or Parti-
tioning clustering methods.

Hierarchical clustering starts by treating each point as a
distinct group and then combines the two closest groups into
new ones while maintaining the original groups. The process
is repeated until the desired number of clusters is reached,
allowing for varying levels of similarity and flexibility. It’s
ideal for small data sets.

Partitioning clustering splits data points into a set number of
groups, then optimizes the cluster locations and their assigned
data points. It creates non-overlapping collections ideal for
large data sets, specified outcomes, and subsequent analysis.

Hazelnut utilizes K-Means partitioning clustering, randomly
selecting ”k” data points as the centroids for each cluster. Data
points are then assigned to the closest centroid’s group. Finally,
the centroids are re-assigned to the mean of the data points in
each cluster. This process repeats until the outcomes stabilize.

Hazelnut uses the Silhouette Method, which evaluates the
silhouette width, the difference between the average intra-
cluster distance and average inter-cluster distance produced
by each ”k” value in a range to determine the optimal ”k”
value.

3) ChatGPT: Hazelnut integrates ChatGPT, powered by
Open AI’s gpt-3.5-turbo model accessed via API, to enable
full functionality in a user’s search directory.

APIs (Application Programming Interfaces) allow different
software applications to communicate by establishing a col-
lection of functions that can be called by one application to
access specified features and information from another.

Despite its power, the OpenAI API has limits, especially
in the amount and speed of data requests. Language models
read text in tokens. In English, a token can be as short as
one character or as long as one word. OpenAI charges $0.002
per 1K for gpt-3.5-turbo. Free OpenAI accounts give users an
$18 credit for up to 9 million tokens; a single call can only
access 4096 tokens. These limits, while generous, could still
pose issues for prolonged use.

III. IMPLEMENTATION

Since the most code intensive features of Hazelnut consist
on a search engine, one of the pivotal components of our code
is the automated creation of a knowledge base. We restricted
the content of our knowledge-base to metadata (file names and
locations) data (text within our files) sentences, keywords and
contacts within our files, all of them stored in pandas data
frames.

A. Creation of the knowledge base

The main data frame we built is the meta-data data-frame
which contains file names, sub-directories and their complete
file paths within a specified directory. From this data frame we
run different functions to extract text from Microsoft Word
documents and PowerPoint files, PDF’s and text files. After
extracting the text we tokenize the text per files into sentences
and keywords and we save them into different data frames for
easier access.

The contacts data frame is built manually, since in a realistic
implementation they contact information would be provided by
the user upon signing up in the app.

Every data frame (text, sentences, keywords and contacts)
contains a column with its corresponding embedded vector.

B. The hazelnut API: The ‘prompt’ pipeline

As you can see from figure 1, prompt classification is the
vital first step in deciding what functionalities of Hazelnut to
utilize for a given user prompt. The prompt classifier needs
to predict with high accuracy which of the four classes of
Hazelnuts functionalities to access. To do this we needed to
develop our own classifier model.

We began by generating an initial dataset of 25 example
prompts for each category, meaning our final dataset was only
around 100 prompts and their corresponding class. Within each
prompt we tried to include 1-3 keywords in square brackets
that could later be replaced to create a much larger augmented
dataset.

We then created a dictionary containing keys matching the
keywords included in the prompts and an array of values

Fig. 1. Example of an image spanning the entire width.

representing possible words in that keywords category. Us-
ing this keyword dictionary, we were able to create a final
augmented dataset that was approximately 10x the original
size by generating prompts with all possible keyword value
combinations. This gave our models a much better chance of
generalizing on the overall structure of our queries as opposed
to overfitting on specific examples.

Using this dataset we trained 3 separate models, a CNN,
Random Forest, and State Vector Machine, and took the
geometric average of their predictions for our final class
prediction. Taking the geometric average of the 3 models
yielded an overall better accuracy as each model was small
and they could not fully cover all possible cases alone. The
final accuracy was 98% on our test set.

IV. CONCLUSIONS AND POTENTIAL IMPACT

The rapid progress in AI technology, particularly in the field
of predictive text transformers, has opened new possibilities
for computer interaction and capabilities. By combining these
advances with other areas of AI research and traditional
computing, such as clustering, embedding based data repre-
sentation, and semantic search, we can create systems that
redefine the traditional user interface into something more
conversational and tailored to individual needs.

Hazelnut represents a first step in this direction, pushing
the boundaries of how we view the systems we use daily into
something more dynamic and fluid. The conversational nature
of Hazelnut lowers the barrier of entry for users, enabling
anyone to voice their intentions and receive personalized
assistance.

The potential impact of Hazelnut and similar technologies
on personal and professional productivity and organization is
immense. Hazelnut’s fast turnaround time on tedious tasks
such as file management and business communications mean
greater efficiency and engagement on previously daunting
projects. As a personal assistant that maintains an extensive

set of databases related to the user’s personal and professional
life, Hazelnut eliminates the tedium of maintaining records of
conversations, contacts, and files.

Despite these benefits, machine learning carries risks of
non-deterministic behavior. As users, we are accustomed to
computers being precise and rigid in their operation. Given the
unsupervised nature of AI training, conversational AI systems
cannot guarantee that everything has been accounted for in
the way that traditional programs can. Hazelnut’s personalized
databases help minimize this risk, but users must exercise
caution to proofread and fact-check Hazelnut’s work to avoid
overlooking errors or omissions.

In conclusion, the potential impact of Hazelnut and other
conversational AI assistants is significant, making it a promis-
ing area for further research and development. While it is
important to be mindful of the risks associated with machine
learning, Hazelnut represents a crucial step towards creating
more personalized and intuitive interfaces that can adapt to
individual needs and preferences. With continued progress
in AI technology, we can look forward to a future where
interacting with computers is more natural, productive, and
enjoyable.

REFERENCES

[1] What is Natural Language Processing https://www.ibm.com/topics/
natural-language-processing#:⇠:text=the%20next%20step-,What%
20is%20natural%20language%20processing%3F,same%20way%
20human%20beings%20can.

[2] Transformers (machine learning model) https://en.wikipedia.org/wiki/
Transformer (machine learning model)

[3] all-MiniLM https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

[4] all-mpnet https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

[5] Semantic search https://en.wikipedia.org/wiki/Semantic search
[6] Jiawei Han, Micheline Kamber, Jian Pei, Getting to Know Your Data,

Data Mining (Third Edition), Morgan Kaufmann, 2012, Pages 39-82,
ISBN 9780123814791, https://doi.org/10.1016/B978-0-12-381479-1.
00002-2

https://www.ibm.com/topics/natural-language-processing#:~:text=the%20next%20step-,What%20is%20natural%20language%20processing%3F,same%20way%20human%20beings%20can.
https://www.ibm.com/topics/natural-language-processing#:~:text=the%20next%20step-,What%20is%20natural%20language%20processing%3F,same%20way%20human%20beings%20can.
https://www.ibm.com/topics/natural-language-processing#:~:text=the%20next%20step-,What%20is%20natural%20language%20processing%3F,same%20way%20human%20beings%20can.
https://www.ibm.com/topics/natural-language-processing#:~:text=the%20next%20step-,What%20is%20natural%20language%20processing%3F,same%20way%20human%20beings%20can.
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://en.wikipedia.org/wiki/Transformer_(machine_learning_model)
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://en.wikipedia.org/wiki/Semantic_search
https://doi.org/10.1016/B978-0-12-381479-1.00002-2
https://doi.org/10.1016/B978-0-12-381479-1.00002-2

Lung Cancer Detection on Chest X-rays using Deep
Convolutional Neural Networks

Jackson Kehoe
Queen’s University

jkehoe00@gmail.com

John Zhou
Queen’s University

johnzhou7913@gmail.com

David Nguyen
Queen’s University

david.nguyen@queensu.ca

Frank Siyung Cho
Queen’s University

20fsc@queensu.ca

Abstract—Early diagnosis of lung cancer is critical for early

intervention and prognosis in cancer treatment. Chest X-rays are

an accessible, cost-effective and low-radiation imaging method to

investigate lung cancer. The team explored the application of

machine learning algorithms to X-ray images to identify lung

cancer. Our team used the a subset of the ChestXray-8 dataset

and narrowed the data down to masses and nodules found in

the lungs. The data was then split for an even distribution of

cancer and non-cancer images. An AlexNet, a VGG-16 and a

ResNet50 are the machine learning models that are investigated.

A smaller subset of the data provided has bounding boxes, the

bounding boxes will be included in the model it achieves small

loss amounts. The team was able to achieve a 73.26% accuracy,

a precision of 0.73, a recall score of 1.00, and an F1 score of

0.85 on the testing data. After training, the bounding box model

achieved a 8.97 X e-04 loss. Further work on the project includes

exploring different models to improve the scores, obtaining more

bounding box data to create a localization feature, and creating

an interactive application that can be used in a medical setting.

I. INTRODUCTION

This is the paper for the QMIND team exploring machine
learning algorithm applications to detect lung cancer. This
paper contains all the information achieved through the design
process and findings of the team.

A. Motivation

Lung cancer is the leading cause of cancer mortality in
Canada and worldwide [1]-[2]. It is estimated that 30,000 were
diagnosed with lung cancer in 2022, and a further 20,700 will
die of it, representing approximately 24% of cancer deaths
that year [3]. The Canadian health care system has been
weakened due to the COVID-19 pandemic, with many health
care providers facing burnout due to the stress of working
overtime hours while being understaffed. In a survey of health
care workers conducted in 2021, 83% of physicians said
they felt more stressed, 65% stated they had an increase of
workload, and 46% have had to work additional hours [4].
Due to this environment, 11% of doctors intend to leave health
care or change careers within the next 3 years [4]. This loss
in practitioners could further strain the system.

Wait times for medical imaging have significantly increased
since the COVID-19 pandemic, with some provinces reporting
median wait times of 7 to 8 weeks for a computed tomography
(CT) scan and 12 to 20 weeks for a magnetic resonance
imaging (MRI) scan compared to the recommended 30-day
wait time [5].

Prevention, screening and early diagnosis are critical for
reducing the burden of cancer and improving patient prognosis
and survival rates [1]. While CT scans have been proven
to be superior to chest X-rays for lung cancer screening,
chest X-rays remain more accessible, cheaper and provide
low exposure to radiation [6]. The highest quality studies
in the literature suggest that the sensitivity of radiologist
interpretation of chest X-rays for symptomatic lung cancer is
approximately 77-80% [7]. Thus, augmentation of diagnostic
accuracy using computer-aided detection software on chest X-
rays may be warranted to further improve rates of early lung
cancer diagnosis where low-dose CT scans are unavailable.
These issues can be alleviated by leveraging deep convo-
lutional neural networks (DCNNs) trained on chest X-rays
to identify cancerous masses and nodules. Computer-aided
detection systems using DCNNs can accelerate and assist
medical providers during the diagnostic process and reduce
the number of cancer cases that go undiagnosed.

B. Problem Definition

The problem is to correctly identify possible cancerous areas
on the lungs based on chest radiographs and, if possible with
a sufficiently high degree of accuracy, to additionally localize
the cancerous tissue using bounding boxes. By classifying and
localizing the presence of lung cancer on chest X-rays, the
diagnostic process and accuracy of lung cancer detection can
be improved. With the growing role of computer vision in
radiology, we acknowledge the importance of ethical practices
regarding data privacy, algorithmic biases, as well as safety
and transparency.

II. METHODOLOGY

A. Data

The data used is from the Chest-Xray8 data set that is
publicly available online [9]. The data set contains 108,948
frontal view X-ray images from 32,717 unique patients that
have been de-identified by name and given subject IDs. It
includes the subject’s age, but contains no description of their
lifestyle, medical history or other personal characteristics. The
data has labels associated with each image for different lung
and heart afflictions. The data was first tested using all lung-
related labels, and subsequently narrowed down to explore the
accuracy of DCNNs for classifying the presence or absence
lung cancer. The labels of masses and nodules were the best

clinical indicators for predicting lung cancer on chest X-rays.
The provided data had already been split into training, testing
and validation data. Initially the data had approximately 1,000
cancer positive images with nearly 50,000 cancer negative
images. This resulted in the model predicting negative every
time. The data was further processed for an even dispersion
of data. Shown below in Figure 1 is a graph showing the
dispersion between cancerous and non-cancerous images.

Fig. 1. Dispersion of the data used.

The images used for training and validation had a scale,
shear, zoom, rotation, brightness range, horizontal and vertical
flip applied to it. For testing, only a scale was applied. From
these images, 6,300 images were used for the training set, 44
for the validation set, and 1,969 for the testing set.

B. Proposed Solutions

The proposed solution was to explore the accuracy of 3
different neural networks in predicting lung cancer. The chosen
models were AlexNet, ResNet50 and a VGG-16 model due
to their high accuracy in other machine vision applications.
Each model will use the adaptive moment estimation (Adam)
as their optimizer with a learning rate of 1e-4.

The AlexNet is based off a convolution neural network with
5 dense layers, 3 max pooling layers, 2 normalization layers,
2 fully connected layers and 1 softmax layer. The architecture
can be seen in Figure 2.

Fig. 2. Architecture of AlexNet[11].

The ResNet50 is a ResNet model consisting of 48 convolu-
tion layers with a MaxPool and Average Pool layer for a total
of 50 layers. It uses ImageNet weights, which are initialized
values for the layers to base their image classification on. The
architecture can be seen in Figure 3.

Fig. 3. Architecture of ResNet50[12].

The VGG-16 is an improvement to the AlexNet model.
It has 13 convolutional layers and 3 fully connected layers,
doubling the layers when compared with AlexNet. The archi-
tecture can be seen in Figure 4.

Fig. 4. Architecture of VGG-16[13].

C. Evaluation

The models are evaluated based on their accuracy when
predicting positive and negative instances of cancer. 3 different
accuracy measures are collected for the training, validation
and testing. Additionally, measures for the precision, recall
and F1-score will be collected to evaluate the effectiveness
of each model. The equations for the accuracy measures are
shown respectively below.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 · Precision · Recall
Precision + Recall

(4)

D. Bounding Boxes

Bounding boxes will be applied to the model if a regression
model is able to accurately predict the area of concern.
The data for bounding boxes is limited for the X-rays with
approximately 160 entries for mass and nodules annotated.
Additionally, applying bounding boxes to X-rays is difficult as
it does not provide perfectly clear images when compared to
CT scans. Shown below in Figure 5 is the annotated bounding
box on an X-ray image with a mass/nodule.

Fig. 5. Bounding Box on Training Image.

III. RESULTS

A. Classification

The performance of the 3 models were decided based on 4
metrics: Accuracy, Precision, Recall and F1. These 4 metrics
were decided to be the most relevant however, other metrics
such as Specificity or Negative Predictive Value (NPV) could
have been used.

The accuracy metric was used to determine how many
images the model could correctly classify as having
masses/nodules from the total amount of sample images; this
is demonstrated below in Equation 1.

The precision metric was used to determine the number of
samples which were predicted to have masses/nodules from
the total amount of samples with masses/nodules; this is
demonstrated in Equation 2.

The recall metric also known as sensitivity or true positive
rate was used to determine how many predicted images and
actual images had masses/nodules from the total amount of
images with masses/nodules; this is demonstrated in Equation
3.

Finally, the F1 metric was used to determine the number
of correct predictions the model made; this is demonstrated in
Equation 4.

The results for the classification task for all models can be
found in Table 1.

TABLE I
METRICS FOR BINARY CLASSIFICATION USING DIFFERENT MODELS

Model Testing Accuracy Precision Recall F1

VGG-16 73.26% 0.73 1.00 0.85
ResNet50 57.29% 0.50 0.85 0.62
AlexNet 49.21% 0.49 1.00 0.66

Out of the models we tested for binary classification, VGG-
16 performed the best overall. VGG-16 achieved an accuracy
of 73.26%, precision of 0.73 and F-1 score of 0.85 for
predicting cancer versus no cancer on the testing set.

Our results could have been limited by the data set. There
was a low distribution of data and low amount of data available
for cancer positive versus negative. With the 50/50 distribution
we utilized to disperse data, the models were not exposed
to the entire range of X-rays for training and were thus not
generalizable. Moreover, further limitation of this model is that
the Chest-Xray8 dataset used auto-annotated labels and were
estimated to only be 90% accurate, potentially contributing
to inaccuracies [9]-[10]. The model could be correct in its
assessment, but the labelling on the data set may have been
wrong.

It must also be noted that authors of the Chest-Xray8 data
set tested various models on multi-label classification had sig-
nificantly lower accuracies (56.44% and 71.64% respectively)
for mass and nodule classification compared to other diseases
[9].

The training results of the models can be seen through
figures 6 to 8. 20-30 epochs of the training and validation sets
were used for training. All 3 differed in accuracies for training
and validation. It is important to reiterate that the validation set
only had 44 images, so interpreting the results should mainly
be focused on the training accuracy.

Fig. 6. ResNet50 Training and Validation Accuracy

Fig. 7. AlexNet Training and Validation Accuracy

Fig. 8. VGG-16 Training and Validation Accuracy

ResNet50 gradually improves its training accuracy from
about 50% to about 72%, but its validation accuracy remains
inconsistent. As the accuracy has not plateaued by the end of
training, this indicates that the accuracy could further improve
with more epochs. AlexNet training accuracy remains steady
around 50% throughout training. Due to error in running,
the validation was not tracked, but the results suggest that it
would be consistent with VGG-16’s validation accuracy. VGG-
16 produces consistent results throughout training, retraining
a training accuracy around 67% and a validation accuracy
around 70%. The AlexNet and VGG-16 consistent results
suggest that the model have been overfitted early on and
were not able to improve. This suggests that the models are
too simple and could benefit from more layers, a different
optimizer, a different loss metric, and/or a smaller learning
rate.

B. Localization

The bounding boxes were trained on a basic CNN and loss
was measured. The loss by the end of training was 8.97 X e-

04 on the training data and 0.0362 on the validation data. The
values on the bounding boxes were normalized before being
passed into the model. So these values are considered to be
large. Good results were unable to be achieved in the bounding
boxes due to lack of data available and distinction within the
X-ray images. The results of a sample bounding box prediction
is shown in blue on the image with green representing the true
bounding box in Figure 9.

Fig. 9. Predicted bounding box shown in blue, actual bounding box shown
in green.

IV. RELATED WORKS

In 2018, Ausawalaithong et al. used a DenseNet model
with ImageNet weights and 121 layers to classify lung cancer
through chest X-rays [14]. They trained their model on the
ChestX-ray14 data set. They differed by training their model
on 108 899 images with 4992 nodule images being the
positives and deemed cancerous, but kept a 50/50 split of
cancer non-cancer for the validation and testing set. They did
not include masses as positives. 108 899 images were used
for training, 2048 images were used for validation, and 532
images were used for testing. The models were trained on an
unspecified number of epochs. On the data set, they achieved
an accuracy of 84.02%, a specificity of 85.34%, and a recall
value of 82.71% for nodule detection.

In this paper, X-ray scans were the primary medical
imaging procedure used to identify masses/nodules. How-
ever, other imaging techniques, such as PET scans or MRI
scans, can be used in order to obtain accurate results when
applying machine learning models. In 2021, Idrahim et al.
used a data set comprised of 33 676 X-ray and CT scans
to 4 different image classification models, a VGG19-CNN,
a ResNet152V2, a ResNet152V2 + Gated Recurrent Unit
(GRU), and ResNet152V2 + Bidirectional GRU (Bi-GRU) to
identify COVID-19, pneumonia, and lung cancer [15]. Of the 4
techniques, the VGG-19 model was deemed to have the most
accurate results with an accuracy of 98.05%, a precision of
98.43%, a recall of 98.05% and a F1 score of 98.24%.

V. CONCLUSION

In this paper, 3 convolutional neural networks, an AlexNet,
a ResNet50, and a VGG-16, were trained on chest X-ray
images from the Chest-Xray8 data set. After applying data
augmentation on an even split of images showing cancer and
no cancer and splitting the data into training, validation, and
testing sets, these models were unable to produce sufficiently
high accuracy, precision, recall, and F1 scores for classifying
chest X-ray images for lung cancer. Of the 3, VGG-16
performed the best with an accuracy of 73.26%, a precision of
0.73, a recall of 1.00, and an F1 score of 0.85. The bounding
box regression model was also unable to produce bounding
boxes that accurately mapped the area with masses or nodules.

A. Future Work

As evident in the DenseNet model produced by Au-
sawalaithong et al. on the same data set used in this paper,
high scores in classifications are possible. This suggests a
number of changes that could improve results: (1) Add more
layers in the network - the DenseNet used 121 layers, while
the ResNet50, the largest model evaluated in this paper, had
50 layers. (2) Add more images to validation - the DenseNet
had 2048 images for validation while the 3 models had
44 images to validate from. Validation is not used to train
the model, rather, it provides insight on how it performs
while training. With a clearer output, researchers will have a
better understanding on how to improve it. (3) Run for more
epochs - more epochs should help the models converge in
accuracy. As seen in the ResNet50 accuracy plot, the model
has large spikes throughout training and had not plateaued in
its learning yet. (4) Use a different optimizer, loss function,
and/or decrease the learning rate - the AlexNet and VGG-16
models converged early on and do not suggest improvement
through more epochs. Changing 1 or all 3 could improve on
this.

The same suggestions can be applied to the bounding box
regression model, however this can also be attributed to the
small size of the data set with exact positions of mass. More
lung cancer chest X-ray data sets should be considered to
supplement this. In addition, since Chest-Xray8 had the limita-
tion of using auto-annotated labels, further steps include using
radiologist-annotated datasets. Employing a transfer learning
approach with these DCNNs may also significantly improve
performance with a low number of epochs. Furthermore,
novel approaches employing an ensemble methodology with
multiple DCNNs may improve the accuracy of predictions for
lung cancer and diagnosis using chest X-ray images [16].

REFERENCES

[1] R. Nooreldeen and H. Bach, “Current and Future Development in Lung
Cancer Diagnosis,” IJMS, vol. 22, no. 16, p. 8661, Aug. 2021, doi:
10.3390/ijms22168661.

[2] J. Ferlay et al., “Cancer incidence and mortality worldwide: Sources,
methods and major patterns in GLOBOCAN 2012: Globocan 2012,”
Int. J. Cancer, vol. 136, no. 5, pp. E359–E386, Mar. 2015, doi:
10.1002/ijc.29210.

[3] D. R. Brenner et al., “Projected estimates of cancer in Canada in
2022,” CMAJ, vol. 194, no. 17, pp. E601–E607, May 2022, doi:
10.1503/cmaj.212097.

[4] S. C. Government Of Canada, “Impacts experienced by health
care workers during the COVID-19 pandemic, by occupation,
Canada, September to November 2021,” Jun. 03, 2022.
https://www150.statcan.gc.ca/n1/daily-quotidien/220603/cg-a001-
eng.htm (accessed Mar. 13, 2023).

[5] Fraser Institute, “Waiting Your Turn: Wait Times for Health
Care in Canada, 2022 Report,” 2022. [Online]. Available:
https://www.fraserinstitute.org/sites/default/files/waiting-your-turn-
2022.pdf

[6] E. J. van Beek, S. Mirsadraee, and J. T. Murchison, “Lung cancer screen-
ing: Computed tomography or chest radiographs?,” World J Radiol, vol.
7, no. 8, pp. 189–193, Aug. 2015, doi: 10.4329/wjr.v7.i8.189.

[7] S. H. Bradley et al., “Sensitivity of chest X-ray for detecting lung
cancer in people presenting with symptoms: a systematic review,”
Br J Gen Pract, vol. 69, no. 689, pp. e827–e835, Oct. 2019, doi:
10.3399/bjgp19X706853.

[8] M. M. Jassim and M. M. Jaber, “Systematic review for lung cancer
detection and lung nodule classification: Taxonomy, challenges, and
recommendation future works,” Journal of Intelligent Systems, vol. 31,
no. 1, pp. 944–964, Jan. 2022, doi: 10.1515/jisys-2022-0062.

[9] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M. Summers,
“ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks
on Weakly-Supervised Classification and Localization of Common
Thorax Diseases,” in 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Jul. 2017, pp. 3462–3471. doi:
10.1109/CVPR.2017.369.

[10] B. Wang et al., “Automatic creation of annotations for chest radiographs
based on the positional information extracted from radiographic image
reports,” Computer Methods and Programs in Biomedicine, vol. 209, p.
106331, Sep. 2021, doi: 10.1016/j.cmpb.2021.106331.

[11] X. Han, Y. Zhong, L. Cao, and L. Zhang, “Pre-Trained AlexNet
Architecture with Pyramid Pooling and Supervision for High Spatial
Resolution Remote Sensing Image Scene Classification,” Remote Sens-

ing, vol. 9, no. 8, p. 848, Aug. 2017, doi: 10.3390/rs9080848.
[12] S. Mukherjee, “The Annotated ResNet-50,” Medium, Aug. 18, 2022.

https://towardsdatascience.com/the-annotated-resnet-50-a6c536034758
(accessed Mar. 13, 2023).

[13] M. Ferguson, R. Ak, Y.-T. T. Lee, and K. H. Law, “Automatic local-
ization of casting defects with convolutional neural networks,” in 2017

IEEE International Conference on Big Data (Big Data), Dec. 2017, pp.
1726–1735. doi: 10.1109/BigData.2017.8258115.

[14] W. Ausawalaithong, S. Marukatat, A. Thirach, and T. Wilaiprasitporn,
“Automatic Lung Cancer Prediction from Chest X-ray Images Us-
ing Deep Learning Approach,” in 2018 11th Biomedical Engineer-

ing International Conference (BMEiCON), Nov. 2018, pp. 1–5. doi:
10.1109/BMEiCON.2018.8609997.

[15] D. M. Ibrahim, N. M. Elshennawy, and A. M. Sarhan, “Deep-chest:
Multi-classification deep learning model for diagnosing COVID-19,
pneumonia, and lung cancer chest diseases,” Comput Biol Med, vol.
132, p. 104348, May 2021, doi: 10.1016/j.compbiomed.2021.104348.

[16] L. Vogado, F. Araújo, P. S. Neto, J. Almeida, J. M. R. S. Tavares, and
R. Veras, “A ensemble methodology for automatic classification of chest
X-rays using deep learning,” Computers in Biology and Medicine, vol.
145, p. 105442, Jun. 2022, doi: 10.1016/j.compbiomed.2022.105442.

Organic Post Prediction
Robbie Huang

Queen’s University
20rh1@queensu.ca

Stuart Fong
Queen’s University

stuart.fong@queensu.ca

Jacob O’Neil
Queen’s University

19jmon1@queensu.ca

Brian Grigore
Queen’s University
20bg1@queensu.ca

Flora Lin
Queen’s University

h.flora.lin@gmail.com

Abstract—The goal of the organic post prediction is to help
social media managers save time in choosing images for social
media, and be able to accurately predict the potential of a
post on social media. We use intrinsic image popularity to help
with our research. And basing it off a Convolutional Neural
Network, and optimizing by ranking the thousands of popularity-
discriminable image pairs. With testing results achieving a
respectable performance on Instagram.

I. INTRODUCTION

In recent years we have witnessed a rapid increase in
social media usage on platforms such as Instagram, Facebook,
TikTok, etc. Instagram users post an average of 46,740 photos
every minute [1], with the average engagement rate of a photo
being 0.65%.[2] With trends that come and go, it is hard to
keep up. The job of a social media manager is tough as they
have to choose from dozens of photos to post on Instagram
and hope they are able to reach the target audience with the
algorithm. This paper aims to help social media managers by
creating a method to try to predict popularity on social media.
We use the method of popularity-discriminable image pairs
(PDIPs), to help reduce the influence of other factors that may
cause the popularity of a photo. Using this idea we used over
66 000 images that were scraped off Instagram to use as our
data set for the model. We then use a Convolutional Neural
Network (CNN) to predict the popularity of images.

A. Related Works

A paper that really influenced our project was the Intrinsic
Image Popularity Assessment paper written by Keyan Ding,
Kede Ma, and Shiqi Wang from the City University of Hong
Kong. Their approach is also using intrinsic image popularity
as well as popularity-discriminable image pairs. We tried to
recreate their results using the Siamese architecture as well.
[3]

B. Problem Definition

The process of selecting the most engaging photo for
organic social media posts is a time-consuming and costly
task for social media account managers of both large brands
and small businesses. This task requires a human to choose
the most engaging photo from a collection of dozens of
possible photos multiple times each day. We believe that
there is sufficient data available online to automate this
decision-making process and that a model can be developed
to select the most engaging photo from a batch of photos,
leading to better and faster decision-making for social media

account managers. The goal of this project is to create a
prototype web app that recommends the best photo to post
from a user-uploaded batch of photos. The project’s minimum
viable product includes a generic model for recommending
the best photo, which a user can choose to accept or reject.

The scope of the project focuses on the base case of
helping a social media manager select the most engaging
photo from a collection of photos. However, the project will
include a model trained specifically on the user account’s
genre/theme, enabling the collection of user decisions in
a database for future training. The project’s success will
be determined by real-world user feedback from the client,
which can be used to improve the model’s performance and
add additional features to meet the client’s requirements.

The team will need to consider audience-specific models
for fine-tuning the account’s specific audience/theme and
defining ”engagement” for the industry standard definition.
The project will require a data collection and preparation
component, where an existing relevant image data set can
be used initially. The team will eventually need to train the
model on more relevant data using prediction-based models.

Overall, the project’s objective is to increase the efficiency
and leverage of social media account managers by providing
a tool that enables faster and better decision-making for
posting on social media platforms.

II. METHODOLOGY

We collected and processed the images from Instagram as
follows:

1) About 66 000 images were collected by web scraping
images off of the Instagram website using the methods
described by Ding et al [3]. This process included
snowball sampling through the followers of each account
and then removing 80% of users in order to reduce the
similarities between the sampled Instagram accounts.

2) Images from the same account that were uploaded within
a short period of time from each other were paired
together. These images were selected to be more than
one month old so that the number of likes stabilized,
and had few characters in the caption in order for the
number of likes to be more reliant on the uploaded

image. The image with a more significant amount of
likes was assigned as the first image in the pair.

3) The images were normalized to have a mean of [0.485,
0.456, 0.406] and a standard deviation of [0.229, 0.224,
0.225], and then resized to 224 x 224 px to match the
specifications for the pre-trained ResNet-50 model.

The model we used was a ResNet-50 network [citation] that
was pre-trained on the ImageNet-1k dataset. We replaced the
last fully connected layer with a fully connected layer with
one output that represents the image’s ”popularity score.” The
learning rate of the ResNet-50 part of the network was set to
10�5, while the learning rate of the last fully connected layer
was set to 10�4. The fully connected layer’s parameters were
initialized with the method described by He et al. [citation].

The model was trained as a siamese neural network. The
images were passed into the model separately and a popularity
score was obtained for each. By subtracting the first popularity
score from the second, we obtain a number representing how
much more popular the first image is predicted to be than the
other. The sigmoid of this difference was computed and was
compared to the ground truth value of 1 through the binary
cross entropy loss function.

We used the Adam optimizer with an L2 penalty multiplier
of 10�4. The learning rates decayed by a factor of 0.95 after
each epoch.

III. RESULTS

Below is an example of a table to display results. You
can add columns and rows. Describe what information is
presented in the table in the caption. Make sure to describe
the significance of the information presented in each table and
figure. Also, here is a useful website for generating tables.

TABLE I
EXAMPLE TABLE SHOWING THE RESULTS OF AN EXPERIMENT.

Model Accuracy Precision Recall F1
CNN 97.78% 82.32% 88.66% 90.61%
SVM 86.43% 78.41% 67.43% 55.21%
RNN 79.21% 94.13% 80.03% 75.79%

IV. CONCLUSION

We were able to conduct the organic post prediction, using
our model and the popularity-discriminable image pair and
only basing popularity off the image of the Instagram post.
We believe that once we are able to rank them by the
image itself we can also further this project by bringing in
Natural-Language-Processing techniques, such as analyzing
the caption, location tag, and hashtags. Although a challenging
problem with that would be to keep up with trends that appear
every day on Instagram, thus having to continuously scrape
data off Instagram and training the model to be able to keep
up with trends, this was one of the biggest challenges for us
as a team. We wanted to find a data set that would be recent

enough that when training could still predict the Instagram
algorithm however, all the data sets that we were able to find
were all outdated by years or several months. To resolve this
problem we think that a continuous scraping algorithm and
training have to be done.

REFERENCES

[1] Bernard Marr. (2021, July 13). How much data do we create every day?
the mind-blowing stats everyone should read. Bernard Marr. Retrieved
March 12, 2023, from https://bernardmarr.com/how-much-data-do-we-
create-every-day-the-mind-blowing-stats-everyone-should-read/

[2] Marino, M. (n.d.). Average engagement rate on Instagram
[updated Feb 2023]. Oberlo. Retrieved March 12, 2023, from
https://www.oberlo.ca/statistics/average-engagement-rate-on-instagram

[3] Ding, K., Ma, K., amp; Wang, S. (2019). Intrinsic image popularity
assessment. Proceedings of the 27th ACM International Conference on
Multimedia. https://doi.org/10.1145/3343031.3351007

https://www.tablesgenerator.com/

Predicting the NHL Draft
Ethan O’Brien

Western University

eobrien.hba2024@ivey.ca

James Hutchins
Western University

jhutch63@uwo.ca

Shaz Khan
Western University

skan746@uwo.ca

Abstract—This paper aims to develop a predictive model that
accurately forecasts if a player will be selected in the first
round of the National Hockey League (NHL) draft based on
amateur performance statistics. To achieve this goal, the datasets
were pre-processed by removing null values, outliers, and highly
correlated variables. All categorical variables were converted to
one-hot encoded variables, and columns with vast variabilities
were removed to improve the quality of the dataset.

Class imbalance was checked, and the class weights in each
classification model were balanced to ensure accurate predictions.
The dataset was then standardized and split into training and
testing sets, and Principal Component Analysis (PCA) was used
to reduce the number of features in the dataset.

Several classification models were tested, including Logistic Re-
gression, K-Nearest Neighbours, Decision Trees, Support Vector
Machine, and a Multi-Layer Perceptron Neural Network. These
models were evaluated based on their accuracy, precision, recall,
and F1 score.

To improve the base models, ensemble methods such as
Random Forests, Bagging, and Boosting were used, and the
hyperparameters were fine-tuned using a GridSearch algorithm.
After evaluating the performance of different models, a bagging
SVM model was selected as the final model with C equal to 100
and gamma equal to 1, achieving an accuracy of 84%.

Overall, this model provides NHL teams with valuable insights
to inform their draft strategies, allowing them to make data-
driven decisions and choose high-performing players while saving
time and resources. By exploring various classification models,
this study has demonstrated the effectiveness of machine learning
algorithms in predicting NHL draft outcomes.

I. INTRODUCTION

NHL teams use substantial resources and time scouting
players to determine what round to draft them. Consequently,
teams must find ways to make more informed and data-driven
decisions, as draft pick mistakes are costly and can directly
influence the team’s future success.

A. Motivation

The NHL draft is an important event for all teams, and
selecting the proper player can significantly impact the team’s
performance. However, predicting the draft round in which
a player will be selected is a difficult task that requires
evaluation of various factors such as a player’s skill set,
physical attributes, and performance history. According to a
study conducted by the NHL in 2018, NHL teams spent an
average of $320,000 on amateur scouting during the 2016-
2017 season [1]. However, poor draft picks don’t only cause
monetary costs. For example, in a 2018 interview with Sports
Illustrated, former NHL general manager Craig Button stated:

the cost of a first-round mistake can be catastrophic.
A bad draft pick can set a team back for several years
in terms of both on-ice performance and financial
investment. [2]

Therefore, a predictive model for the NHL draft would provide
teams with valuable insights to inform their draft strategies,
improving their chances of selecting high-performing players
while saving resources.

B. Related Works

Previous research has explored the NHL draft and attempted
to predict the success of drafted players. For instance, one
study utilized machine learning algorithms to predict a player’s
career performance based on their pre-draft statistics [3].
Another study focused on identifying the critical factors that
contribute to a player’s success in the NHL, such as their
point production and draft position [4]. However, no research
focuses specifically on predicting the round in which a player
will be drafted. Therefore, this paper aims to address this gap
in the literature by developing a predictive model that can
accurately forecast draft rounds.

C. Problem Definition

The objective of this paper is to create a predictive model
that can accurately forecast the draft round in which a player
will be selected in the NHL draft. Specifically, the scope will
focus on the first round as these players produce or cost orga-
nizations the most capital, as they can become superstars or a
bust. To accomplish this objective, several player attributes will
be analyzed, such as player position, physical measurements,
and performance history, to evaluate how these fields influence
draft-round selection. Ultimately, the goal is to provide teams
with a valuable tool to inform their draft strategies, enabling
them to choose high-performing players while saving time,
and resources, and allowing the team to make data-driven
decisions.

II. METHODOLOGY

A. Data Processing

The purpose of this paper was to develop a classification
model to predict the likelihood of a professional hockey
player being drafted in the first round based on their amateur
performance statistics. To achieve this, two datasets were
utilized. The first contains NHL draft round picks from the
NHL API and the other performance data from the Elite
Hockey Prospects website, which was obtained using a scraper.

The datasets were merged using the player’s name and only
the most recent amateur year’s stats for each player were kept.

First, the dataset was examined for missing values and
duplicates using the Pandas library in Python. Fortunately,
there were only a few null values that could be removed as
they did not compromise the dataset.

Next, the dataset was tested for outliers using the z-score
technique provided by the Scipy stats library. The test revealed
extreme values for columns P (points) and GP (games played).
These rows consisted of some first-round picks with low stats
and some non-first-round picks with high stats, predominantly
from international leagues. External research validated that this
data was incorrect and that the error resulted from misinforma-
tion on the Elite Hockey Prospect website. The outliers were
removed to improve model performance.

All categorical variables, such as player position, were
converted to one-hot encoded variables, and columns with vast
variabilities, such as league and nationality, were removed. The
collinearity of the dataset was evaluated using a correlation
matrix. The analysis identified that columns A (assists), G
(goals), and P were highly correlated, indicating collinearity.
This issue was addressed by removing the P column from the
dataset.

Fig. 1. Correlation Matrix.

The dataset was then checked for class imbalance. 9% of
the data was first-round picks, which is consistent with the
number of rounds in the NHL draft. Therefore, the dataset
is unbalanced and so the class weights in each classification
model must be balanced to ensure that the first-round and non-
first-round picks are equally represented.

After cleaning the data, it was processed for analysis. It was
divided into features (x) and target (y) variables. The features
dataset was standardized using the Scikit-Learn library to
ensure that the scale of the data did not affect the classification
models. This involved transforming the data to a standard
score by subtracting the mean and dividing it by the standard
deviation. The standard scaler was saved as a joblib file so that
it could be used to transform new data during the prediction
stage.

Finally, the dataset was split into training and testing sets
using Scikit-Learn, with a ratio of 80:20. This will allow the
machine learning models to be trained on a subset of data and
tested on another.

B. Feature Engineering

Principal Component Analysis (PCA) was used to reduce
the number of features in the dataset while preserving as much
information as possible. PCA transforms the data into a lower-
dimensional space by identifying the most important features,
known as principal components [5].

A PCA algorithm was employed by calculating a covariance
matrix and the resulting eigenvectors and eigenvalues. These
are used to rotate the n-dimensional space into a smaller space.
The information proportion was calculated by dividing each
eigenvalue by the sum of all eigenvalues, producing the below
Scree plot which demonstrates the proportion of information
explained by each principal axis. The algorithm was verified
by matching the results to Scikit-Learn’s PCA module. The
analysis revealed that six axis’, G, A, GP, PIM, position C,
and position D, account for 85% of the data variation.

Fig. 2. Scree Plot.

In addition, wrapper methods were used to verify the best
subset of features for the model. Sequential forward and back-
ward feature selection was used with and without replacement,
as well as recursive feature selection with logistic regression as
the test model. Sequential forward selection (SFS) iteratively
adds features to the model based on their performance until a
predetermined number of features is reached, while Sequential
backward selection (SBS) iteratively removes features from
the model [6]. Both SFS and SBS can be used with or
without replacement, depending on whether a feature that
has been selected or removed is allowed to be reconsidered
in subsequent iterations. Recursive feature elimination (RFE)
iteratively removes the feature that has the lowest importance
score. The analysis revealed that the model performed the best
for the same 6 features as the PCA analysis.

Overall, feature engineering reduced the dataset’s dimen-
sionality, improving computational efficiency and allowing
for more sophisticated models to be deployed given CPU
restrictions on the test computer.

C. Model Selection

To determine the best classification model for the proposed
problem, various machine and deep learning models were
employed, such as logistic regression, k-nearest neighbors,
decision trees, support vector machines, and neural networks.

The first model applied was a simple Logistic Regression
model (LR). LR models use the log-odds or sigmoid function
to model the connection between a group of independent vari-
ables and a binary dependent variable. The model determines
the probability that an observation belongs to a specific class
and then classifies the observation based on a predetermined
threshold [7]. The Scikit-Learn library was used to train this
model.

Next, a k-nearest neighbors (KNN) model was employed,
which assumes that data points belonging to the same class
will be close to each other in space. To classify a new data
point, KNN calculates the distance between the new data point
and all the known data points of a particular class. Based
on the value of K (i.e., the number of closest neighbors to
evaluate), it applies the majority rule to assign the new data
point to a particular class [8]. The Scikit-Learn library was
used to train this model.

In addition, a decision tree (DT) model was used. DT
models function by recursively splitting the data based on
the values of the features that best differentiate the data into
distinct groups. Each split creates two new branches, and
the algorithm continues splitting until it reaches a stopping
criterion, such as a minimum number of observations in each
group or a maximum tree depth [8]. The resulting tree is a
hierarchical structure that can be used to classify new data
points by following the branches from the root node down
to the leaf node corresponding to the predicted class. The
splitting criterion used was the Gini index, which measures the
probability of misclassifying a randomly selected observation
in a given subgroup. The max depth was set to 3 to avoid over-
fitting; however, this will be tuned. The Scikit-Learn library
was used to train this model with the architecture in figure 3.

Fig. 3. Decision Tree Plot.

A support vector machine (SVM) model was used. It
functions by defining a decision boundary that maximally
separates the data points of different classes. The decision
boundary is typically a hyperplane in a high-dimensional space
that is defined by the support vectors, which are the data points

closest to the decision boundary. SVM seeks to maximize
the margin between the support vectors on either side of the
decision boundary. In cases where the data cannot be linearly
separated, SVM uses kernel functions to transform the data
into a higher-dimensional space where linear separation is
possible [10].

The radial basis function (RBF) was used. It operates by
mapping the data into a high-dimensional space where a
linear decision boundary can be defined. The RBF kernel
calculates the similarity between two data points using a
Gaussian distribution centered at the data point [8]. Other
hyper-parameters, C, and gamma were set to defaults until
tuning. The Scikit-Learn library was used.

Finally, a Multi-layer Perceptron (MLP) feedforward neural
network classifier was built using the Keras and TensorFlow
libraries. Each layer of the MLP model consists of a set of
neurons, where each neuron takes inputs, performs a linear
transformation, and then applies a non-linear activation func-
tion to the output [9]. The weights and biases of the neurons
are adjusted during training to improve the accuracy of the
predictions. The output of one layer serves as input to the
next layer, and the process repeats until the final output is
produced.

The model deployed has four hidden layers, each with 128
or 64 neurons, and the ReLU activation function is applied
to the output of each hidden layer. The ReLU activation
function sets all negative values to zero and preserves positive
values, which allows the model to learn complex non-linear
relationships between the input and output variables [10].

Batch normalization is a technique used to improve the per-
formance and stability of deep neural networks. It normalizes
the inputs of each layer by subtracting the mean and dividing
by the standard deviation of the batch, which helps to reduce
the effects of input covariance shift and can improve training
convergence [11].

Dropout regularization is a technique used to prevent over-
fitting in neural networks. It randomly drops out (sets to zero) a
proportion of the neurons during each training iteration, which
reduces the interdependence of the neurons and can improve
the generalization performance of the model [13].

The final output layer of the model has one neuron and a
sigmoid activation function, which outputs a probability value
between 0 and 1 that represents the predicted probability of the
input belonging to the positive class. The binary cross-entropy
loss function is used to measure the difference between the
predicted output and the actual output, and the Adam optimizer
is used to minimize the loss during training by adjusting the
weights and biases of the neurons [11].

Fig. 4. Neural Network Architecture.

After training and testing each model, the performance was
evaluated against accuracy, precision, recall, F1 score, and a
confusion matrix.

D. Model Improvement

1) Ensemble Methods: After the base models were ex-
plored, ensemble methods were used to improve the perfor-
mance. Ensemble methods were applied to the LR, DT, and
SVM models.

One ensemble method that was utilized was the Random
Forests method, which was applied to the DT base model.
This method involves building multiple decision trees that
collaborate to classify new data points. The final classification
is based on the most popular classification from all the trees.
Bootstrapping is used to create new datasets for each tree,
which reduces the variance of the model and leads to better
generalization [?].

The scikit-learn Bagging Classifier was also used to improve
the DT, LR, and SVM models. This technique involves train-
ing multiple models on different subsets of the dataset and
aggregating their predictions to form the final output. This
helps to reduce over-fitting and increase the stability of the
model [12]. Figure 5 provides a visualization of the bagging
process [13].

Fig. 5. The Bagging Process.

Boosting was also explored to improve performance. This
is a sequential learning technique where each base model is a
weak learner and builds off the previous model. In Adaptive
Boosting or AdaBoost, each base model is reweighted to
reduce error, and subsequent models attempt to fix the errors in
the previous stage. This approach helps to improve the model’s
accuracy and reduces bias [12].

2) Hyper-parameter Tuning: A Grid Search algorithm was
used to tune the hyper-parameters of each base model. This
technique searches through a specified parameter space to
find the optimal combination of hyper-parameters. The Grid
Search algorithm tested each combination of specified hyper-
parameters by training the model on the training data and eval-
uating its performance on the validation data. The combination
of hyper-parameters that produced the highest accuracy was
selected as the optimal combination.

III. RESULTS

The discussed base models were trained and tested on
subsets of the dataset. The model performance is as follows:

TABLE I
BASE MODEL PERFORMANCE RESULTS.

Model Accuracy Precision Recall F1
LR 77% 64% 78% 65%
KNN 88% 68% 58% 60%
DT 66% 62% 78% 58%
SVM 78% 66% 84% 68%
MLP 70% 63% 81% 61%

The KNN model performed the best with an accuracy
of 88%; however, this was because the Scikit-Lean KNN
Classifier does not support model weighting and so the classes
were imbalanced, shown by the lowest Recal Score of 58%.
Therefore, this result must be disregarded and instead the best-
performing base model was the SVM with 78% accuracy. The
MLP Neural Network also performed well with a Recal Score
of 81% indicating high performance at classifying the under-
weighted first-round pick class.

The LR, DT, and SVM models were then improved using
the discussed ensemble methods.

TABLE II
TUNED MODEL PERFORMANCE RESULTS.

Model Accuracy Precision Recall F1
Random Forests 77% 64% 79% 65%
Bagging DT 69% 62% 78% 60%
Bagging SVM 82% 65% 73% 67%
Bagging LR 77% 63% 77% 65%
AdaBoost DT 67% 62% 77% 58%
AdaBoost SVM 88% 44% 50% 47%

The DT base model was improved by 11% to an accuracy
of 77% using the Random Forests Method. Similarly, the
Bagging SVM model was improved by 4% to an accuracy
of 82%. However, this was at the expense of a decrease in
the Recall score which is an important metric considering
the class imbalance. The Bagging DT resulted in a slight

accuracy improvement and the Bagging LR saw no change
in performance. The AdaBoost SVM model had the highest
accuracy at 88%; however, it had the lowest recall at 50%. The
model did not correctly classify any of the first-round picks
and so must be disregarded.

Overall, the Bagging SVM model performed the best. It
predicted 38 false negatives and 105 false positives. These
results are expected as the stats for players drafted at the
bottom of the first round compared to players drafted at the top
of the second round are very similar. However, this analysis
could indicate that a portion of the players drafted in the first
round did not deserve to be. It would be interesting to explore
if these players were draft busts or lived up to first-round
expectations.

Fig. 6. Bagging SVM Confusion Matrix.

The GridSearch algorithm was used to fine-tune the hyper-
parameters of the Bagging SVM and Random Forest DT
classifier and further improve model performance. For the
Bagging SVM, the optimal hyper-parameters were C=100 and
gamma=1. For the Random Forest DT, the optimal hyper-
parameters were max depth=7 and criterion=’gini’. The Bag-
ging SVM accuracy was improved by 2% to 84% and the
Recall Score by 5% to 78%.

Overall, this paper concluded that an SVM model using
the Bagging technique, and hyper-parameters of 100 for C
and 1 for gamma resulted in the greatest model performance.
NHL teams can now predict if a player deserves to be
drafted in the first round with 84% accuracy, potentially saving
teams millions of dollars by avoiding draft busts and reducing
scouting costs.

IV. CONCLUSION

The NHL draft is an essential event for all teams, and
selecting the right player can significantly impact the team’s
performance. Poor draft picks can cause substantial costs, and
therefore, a predictive model for the NHL draft would provide
teams with valuable insights to inform their draft strategies,
improving their chances of selecting high-performing players
while saving resources.

Based on the analysis conducted, a Bagging SVM model
with tuned hyper-parameters was found to be the best predictor
of whether a player will be drafted in the first round of the
NHL draft. The model achieved an accuracy score of 84% and
a Recall score of 73%.

Moving forward, future research could explore the predic-
tion of other rounds in the NHL draft and analyze the impact
of additional variables, such as player character and work
ethic, on draft-round selection. Expanding the model would
greatly increase the value to NHL teams. In addition, it would
be interesting to explore in more detail which players were
classified as false negatives. The model could be validated by
matching false negatives to draft busts and false positives to
eventual superstars. It can also be tested on the upcoming NHL
draft.

In conclusion, this paper addressed the gap in the literature
by developing a predictive model that could accurately forecast
the first round of the NHL draft. It employed a thorough
Machine Learning process including data cleaning, data explo-
ration, feature engineering, model testing, ensemble methods,
and hyper-parameter tuning. It demonstrated the importance
of a clean and viable dataset and how base models can be
improved with additional machine-learning techniques.

REFERENCES

[1] NHL. (2018). NHL teams invest more in amateur scouting and develop-
ment. Retrieved from https://www.nhl.com/news/nhl-teams-invest-more-
in-amateur-scouting-and-development/c-299201546

[2] Button, Craig. “The Cost of a First-Round Mistake Can Be
Catastrophic.” Interview with Dan Falkenheim. Sports Illustrated,
25 Apr. 2018, https://www.si.com/nhl/2018/04/25/nhl-draft-scouting-
players-craig-button-interview

[3] O’Reilly, N., & Williams, P. (2019). Predicting career performance
of NHL players using pre-draft statistics and physical measurements.
Journal of Sports Analytics, 5(2), 95-107

[4] Larivière, J., Gauthier, A., & Lapierre, M. A. (2019). The importance
of point production and draft position in predicting the success of NHL
players. Journal of Quantitative Analysis in Sports, 15(3), 157-170

[5] Abdi, H., & Williams, L. J. (2010). Principal component analysis.
Wiley Interdisciplinary Reviews: Computational Statistics, 2(4), 433-
459. https://doi.org/10.1002/wics.101

[6] Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature
selection. Journal of machine learning research, 3(Mar), 1157-1182.

[7] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,
Grisel, O., ... & Vanderplas, J. (2011). Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12(Oct), 2825-2830.

[8] Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of
Statistical Learning: Data Mining, Inference, and Prediction (2nd ed.).
Springer-Verlag.

[9] TensorFlow. (n.d.). Guide to Keras Sequential Model. Retrieved from
https://www.tensorflow.org/guide/keras/sequential model

[10] Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT
Press

[11] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. International
Conference on Machine Learning (ICML), 448-456.

[12] Kumar, D., & Sharma, A. (2021). Ensemble Learning for Heart Disease
Classification using Machine Learning Algorithms. In 2021 6th Inter-
national Conference on Computing, Communication and Networking
Technologies (ICCCNT) (pp. 1-6). IEEE.

[13] Analytics Vidhya. (2023, January 30). Ensemble Learning Meth-
ods: Bagging, Boosting, and Stacking. Retrieved February 27, 2023,
from https://www.analyticsvidhya.com/blog/2023/01/ensemble-learning-
methods-bagging-boosting-and-stacking/

Representations of Personality Features using
Modified Autoencoders

Brandon Cheng
Queen’s University

brandonkhcheng123@gmail.com

Chloe Atherton
Queen’s University

Darwin Chen
Queen’s University

darwinchen8@outlook.com

Molly Shillabeer
Queen’s University

mollyshillabeer@gmail.com

Abstract—Complex systems can often be represented in lower
dimensions, and doing so can often grant important insights to
the system by making it easier to analyze. However, many data
compression and reduction techniques face a trade-off between
generalizability and accuracy. In this study, we develop a model
that aims to tackle generalizability without sacrificing accuracy,
and test this model by training it to learn a representation of
personality features using self report survey data. Overall, results
were inconclusive, but the model shows promise and testing
suggests that the theory behind the model is sound. As such, this
project will be worth furthering through testing and refinement.

I. INTRODUCTION

Complex systems are unavoidable in the realm of data
science. Be it the stock market, the weather, or the physical
condition of a human body, raw data taken from these sys-
tems can often be large, messy, and difficult to comprehend.
However, some of these systems, like the human body, can be
represented using a much simpler set of factors, such as the
state of critical organ systems within the body.

A. Motivation

One such system that particularly interests us is human
behaviour. Various efforts have been made to simplify and
categorize human behavior into intuitive groups, but with
varying degrees of success. One well-known example is the
MBTI test [1], which has been criticized for its lack of
scientific backing and questionable reliability. Despite this,
some attempts to factor personality have proven to be more
successful, such as the Big 5 personality test that aims to
categorize personality into five distinct traits and has shown
promising levels of validity. However, a common criticism for
tests of this nature is their lack of reliability, especially given
that the criteria and factors are often based on the creator’s
subjective intuition.

The objective of this research is to develop a customized
model(outlined in the Methodology section) and assess its ef-
fectiveness in generating meaningful data representations. The
performance of the model will be assessed based on its ability
to learn a generalizable personality feature representation
using an existing self-report survey dataset. Additionally, this
study endeavors to create a personality factor representation
that is entirely isolated from human bias.

B. Related Works

Autoencoders [2] are used to learn alternative or compressed
representations of data. It does this using two neural net-
works, one that converts the data to a latent representation,
and another that reconstructs the input data from the latent
representation.

A common use for autoencoders is in data denoising. By
training an autoencoder to represent the data in a limited
latent space, noise that does not conform to the learned
representation is discarded from the input data.

Another common use for autoencoders is in decomposing
and representing complex physical systems in lower dimen-
sions [3]. This utilizes an autoencoder to extract modes of non-
linear systems like fluid flow, allowing a linear transformation
to be applied to the latent representation to reflect a similar
transformation in the original system.

An example of this method uses an autoencoder to learn the
sinusoidal properties of a turbulent flow system from a video
recording of the system. A transformer can then be applied to
the latent representation and reconstructed into a video frame
representing the system after a fixed time interval.

C. Problem Definition

Autoencoders are generally bounded by a bias-variance
trade-off. If an autoencoder’s capacity to fit to the data is
too high, the learned representation may not be meaningful
and can instead overfit to the peculiarities of the dataset. This
can make it difficult to analyze or transform the representation
effectively. On the other hand, if the capacity of the autoen-
coder is too limited, the representation may not be accurately
reconstructed to the original data.

In this study, a customized autoencoder-like model will be
constructed in an attempt to overcome the flaws and trade-offs
of traditional autoencoders. The aim of this model is to create
generalized, meaningful representations without sacrificing the
ability to accurately reconstruct data.

II. METHODOLOGY

Fig. 1. Visual representation of how data is split and assigned to different
encoders and decoders.

Fig. 2. Visual representation of encoders and decoders being cross trained.

1) Data:
The main dataset we will be using is the 16PF survey
result dataset [4].
The data will first be cleaned by discarding unwanted
features like country, name, gender, etc. entries that
contain missing data or only contain one response value
will be discarded.
Next, the data will be split into 3-5 subsets using
randomized stratified sampling to ensure each subset
contains a somewhat balanced set of questions based on
the subgroups the survey questions were labeled with.

2) Proposed solution:
The custom model will consist of 3-5 encoder decoder
pairs, each matched with a data subset, and all having
the same latent space size. (see Figure 1-2)
When training, the model will iterate through all possible
encoder decoder pairs for each train step, with the loss
evaluating the mse between the decoder output and the
data it is supposed to reconstruct. This is done to force
all the encoders and decoders to learn the same latent
space, as each encoder must represent the data in a
way that can be decoded by all the decoders, and each
decoder must learn to decode the latent representation
of all the encoders. This also ensures that the encoders

represent the data in a way that is generalizable and isn’t
easily affected by peculiarities that are specific to any
one subset of data.

3) Evaluation:
The model will be evaluated on two metrics, which are
applied to all encoder decoder combinations except the
combination containing the encoder and decoder from
the same set. This is done to focus the metrics on
measuring how well the model generalizes the latent
representation to non-identical data. The first metric is
accuracy. This is measured by rounding and clipping
the model’s output to a valid survey response. It is then
compared to an actual user’s response to determine the
accuracy of the model. The second metric is the model’s
binary loss, where the model will only be evaluated on
how accurately it predicts the net sentiment(1-2 vs 4-
5) of the survey response whenever the response isn’t
null(3).

4) Details/Analysis:
The optimal size of the latent space was determined by
testing each latent space within a reasonable range(3-19)
and recording the binary accuracy of the model trained
with that latent space. It was determined that a latent
space of 8 would be optimal as further increasing the
latent space would result in a negligible gain in accuracy.
(see Figure 3)
Using a fixed latent space, different model shapes and
layer depths were tested. With a latent space of 8, it
was found that the optimal shape was to have no hidden
layers. However, hidden layers were used when using a
latent space of 3.
The training progress with a latent space of 3 was also
plotted to analyze how well each encoder’s latent space
was converging. The results of this analysis confirmed
the theory that the different encoders would learn the
same latent representation through the customized train-
ing function. (see Figure 4)

Fig. 3. binary accuracy of models trained with different latent space sizes.

Fig. 4. A representations of four subsets in a data point converging as the model trains.

III. RESULTS

TABLE I
MODEL RESULTS.

Latent space Hidden layers Accuracy Binary Accuracy
8 0 40% 79%

As shown in table 1, the model appears to have performed
poorly in terms of the accuracy metric, but decently well in
terms of the binary accuracy. This shows us that the model
could not predict the exact score a subject would respond to a
survey question with, but could predict, generally, whether the
subject agreed or disagreed with the survey question. While the
model did not perform as well as expected, its binary accuracy
shows promise, as it implies that the latent representation
generated could represent the presence of personality features
decently well, if not the exact degree to which they are present.

IV. CONCLUSION

Overall, this study has shown that the customized model is
a viable method for creating alternate representations of data.
It also shows that the theory behind the model is sound, as
Figure 4 demonstrates that the latent spaces of the encoders
and decoders converge to learn a shared representation of the
data.

However, it has yet to be definitively shown that the
customized model can create representations of data that
surpass traditional autoencoders in terms of generalizability
and meaningfulness. It has also yet to be shown how well the
personality representation generated in this study compares to
traditional personality tests like the Big 5.

In conclusion, this study has served as a good starting point
for the development of the customized model. We have shown
its viability, demonstrated the soundness of the theory behind
it, and utilized it to create a representation of personality
from a self report survey dataset to some degree of success.
More testing and refinement will have to be done in order to
polish and prove the customized model, and additional data
processing and comparison will be required to fully develop
an adequate personality representation.

REFERENCES

[1] Stein, R, Swan, AB. Evaluating the validity of Myers-Briggs
Type Indicator theory: A teaching tool and window into intu-
itive psychology. Soc Personal Psychol Compass. 2019; 13:e12434.
https://doi.org/10.1111/spc3.12434

[2] Bank, D., Koenigstein, N., & Giryes, R. (2020). Autoencoders.
doi:10.48550/ARXIV.2003.05991

[3] Lusch, B., Kutz, J.N. & Brunton, S.L. Deep learning for universal
linear embeddings of nonlinear dynamics. Nat Commun 9, 4950 (2018).
https://doi.org/10.1038/s41467-018-07210-0

[4] Open psychology data: Raw Data from online personality tests. (n.d.).
Retrieved March 13, 2023, from http://openpsychometrics.org/ rawdata/

Real-Time Sign Language Translation
Hendrix Gryspeerdt

Queen’s University
hendrix.gryspeerdt@gmail.com

Liam Salass
Queen’s University

liamsalass@yahoo.com

Xinran Wang
Queen’s University

wxr.sammi@hotmail.com

Abstract—This report discusses the implementation of an
American Sign Language (ASL) recognition model in Python,
motivated by the need to break down communication barriers
between the hearing-impaired and other communities. The prob-
lem is approached as an image recognition problem, and the team
used various libraries such as TensorFlow, Keras, Mediapipe
and sci-kit learn to build the model. Multiple different data
sets were used. The initial models were convolutional neural
networks (CNNs) and were later swapped out for detecting
hand landmarks and training with support vector machines
(SVMs) so that live predicting performance would increase. The
significance of this model is highlighted by the lack of readily
available software solutions for hand sign language recognition.
The report concludes with the team’s achievements in building
an accurate ASL recognition model, which could potentially be
further developed into a live-stream data solution with the use
of more comprehensive data sets.

I. INTRODUCTION

A. Motivation

There has always been a communication gap between the
community of hearing- and speech-impaired individuals and
the majority of people without those disabilities. American
Sign Language(ASL), serving as the predominant sign lan-
guage of deaf communities, is however challenging to learn
and often unrecognized by the majority. To facilitate communi-
cation and promote the accessibility of sign language, we aim
to develop a real-time sign language translation application
that recognizes the ASL alphabet and translates them into
readable text.

The motivation to solve this problem was initially estab-
lished after reading the clients’ proposal from Jomo Kenyatta
University of Agriculture and Technology (JKUAT). Since
there were no common-name, readily accessible software
solutions providing sign language translation, their project
aims to develop a system that enables real-time communication
between hearing- and speech-impaired people and people who
don’t understand sign language. Pursuing a similar goal, we
decided to build a real-time American Sign Language (ASL)
recognition model in python that can be used in ASL learning
scenarios.

B. Related Works

One commercial solution for ASL recognition the team
came across was called SignAll. SignAll’s products were not
free to access, and the team should have contacted them to
obtain a trial of their product. SignAll also mentioned on their
website that they have an app called Ace ASL that is available

on the apple store and google play. However, the app was
nowhere to be found, leading the team to believe that this
problem had not been solved yet, or at least the solution was
unavailable as a commercial product.

In search for data sets of labeled ASL hand signs to train
a model, the team came across multiple data sets, and one of
those data sets was linked to an ASL recognition model hosted
on AWS.

One data set we worked on (Kaggle data set #3) was used
in a study by Moklesur Rahman et.al in 2019, which proposed
a CNN model to recognize the numerals and alphabets in four
publicly available ASL data sets. Their model took 64 x 64
pixels images into a CNN with 6 convolution layers and 3
pooling layers. It reached high accuracy of 99% on all the
presented data sets, but the results didn’t reach live-stream
data. This has been the challenge for most ASL recognition
models available, that they only achieve compromising results
in their data sets, but perform unsatisfactorily for new data.

Other related works include iPhone app store ASL transla-
tors. These apps represent early attempts at leveraging technol-
ogy to bridge communication barriers and highlight the signif-
icance of our model. The app signTranslator did single letter
predictions, and the app Signer. Both applications performed
abysmally, according to user reviews and our testing.

C. Problem Definition

Based on the poor performance of the readily available
solutions (the apps listed above) we wanted to build our
own, more effective solution to ASL alphabet recognition.
Therefore, the goal of the project came was to recognize the
American sign language letter from the alphabet being shown
in a still image. Then, by extension of this capability, design
control logic to allow the processing of live video feed into
cohesive text.

The team initially identified the problem of ASL recognition
and interpretation as an image recognition problem. The team
has had past experiences using python along with various
libraries such as TensorFlow, Keras, sci-kit learn, and others to
build artificial intelligence models to solve similar problems.

II. METHODOLOGY

A. Design Process

1) begins with defining the ”minimum viable product”
2) collect data for training models
3) do any necessary pre-processing of the data

https://www.signall.us/online
https://apps.apple.com/ca/app/signtranslator/id1592412766
https://apps.apple.com/ca/app/signer-ai-sign-translator/id6443756654

4) code ai model and train with data, make sure that the
model has a high accurracy on the testing and training
data

5) test the model in real-time with a live video feed and
see how well it works in practice

6) if it doesn’t work in practice: modify live webcam pre-
processing so that the image is better centered around
the hand. If that still doesn’t work go back to step 3. If
you come back to this step a second time, go to step 2.

7) model works in practice. refine the control logic for
determining when to add a letter prediction to the
current string of character input and what the minimum
confidence would have to be so that a prediction is not
discarded.

B. Data set
different data sets we worked with and compare them in a

table:
a) Sign Language MNIST: Kaggle data set MNIST The

MNIST data set is composed of 27455 training and 7172 test
data cases. Each training and test case represents a 28x28
pixel image (pixel1-784) with a label (0-25) corresponding to
an alphabetic letter, excluding 9=J and 25=Z which required
gesture motions. The data came from extending a small
number of color images with various users and backgrounds
doing hand signs. After the modifications, all the images were
gray-scaled, cropped around the hand region of interest, and
had low resolution. The data set was available on Kaggle and
was stored as csv files.

b) Kaggle data set #2: Kaggle data set #2 The data set
contains 27 classes: letters A-Z and unknown (images without
hands in the frame). There was a total of 40500 images, 1500
for each class. It was not split into training and test data sets.
The images were grey-scaled, cropped to the region of interest,
and resized to the same dimensions, but were squished and
tilted so that the hands in the frame were not of the same
size. The images mostly had white sheet backgrounds, but
part of it had messy backgrounds which resembled the real
applications. The data set is the smallest among the three, but
had the highest variability among the data, though it still lacks
a presentation of unique hands. The data set was available on
Kaggle and was stored as jpg files.

c) ASL Alphabet: Kaggle data set #3 The training data
set contains 87,000 images in 200 x 200 pixels. It has 29
classes: 26 for letters A-Z (J and Z are presented without
gestures) and 3 classes for SPACE, DELETE, and NOTHING.
The NOTHIHG class represents a blank wall, which was
equivalent to Mediapipe detecting no hand in the frame. These
3 classes allow transitions between spelling different letters
in real-time applications and classifications. The test data set
only contains 29 images, one for each class, which allows us
to test the model against our live-stream data. The data in
the data set are color images cropped around the hand region
of interest. However, it is worth noting that the images all
represent similar hands with similar backgrounds, providing
little variety between the data. There is also an apparent lack

of rotated hand signs. This resulted in letters such as ’L’, ’D’,
and ’X’ not being classifiable from their side views. The data
set was available on Kaggle and GitHub and was stored as jpg
files.

Fig. 1. ASL alphabet data set.

C. CNN failed to predict live-stream data

potential reasons using CNN on images didn’t work:
• CNNs are better designed for recognizing 2D features

and hand gestures are 3D features. It works for detecting
hands in a frame but may fail to extract the unique 3d
shape of different hand signs in a live-stream feed.

• Bigger data sets with more variety are needed: the data
in all three training data sets lacked variety. The hands
were similar or had similar backgrounds, so the model
fails when the live-stream input data are vastly different.

• When dealing with real-time data the number of possi-
ble hand orientations representing the same letter differ
largely, therefore to extract highly specific hand orienta-
tion in 3D space did not lend itself to be accomplished
by a convolutional neural network.

D. Using Mediapipe to detect hand-landmarks

Mediapipe is a hand-detection open-source library produced
by Google. It was utilized to convert a data set containing
hand images into a new data set containing hand landmarks
positions in 3 dimensions. There are 21 hand landmarks that
media pipe would generate on a photo, however, only 20 points
were used as inputs to the SVM. This was done by subtracting
the position of the wrist landmark from all 20 other landmarks
to get their relative positions to the wrist, as opposed to their
relative position in the frame. The newly generated data set
was then used as the training data for the SVM model. The
library was also used to detect where the hand is in the frame
and crop the hand’s region to be passed to models (CNN
models) as square images. That way, all images passed to the
model avoid being compressed, and fit the models’ input shape
(in the case of the CNN). For the aforementioned reasons,

https://www.kaggle.com/datasets/datamunge/sign-language-mnist
https://www.kaggle.com/datasets/muhammadkhalid/sign-language-for-alphabets
https://www.kaggle.com/datasets/grassknoted/asl-alphabet
https://google.github.io/mediapipe/

Mediapipe was a necessary component to the success of our
project.

Fig. 2. 21 Mediapipe hand landmarks.

E. Support vector machines
Support vector machines are effective at classifying sets

of high-dimensional vectors. The intuition behind using a
support vector machine to classify hand sign gestures is as
follows. In the case of the hand landmarks generated by
Mediapipe (see image above), the set of 3D points that form
the hand orientation can be flattened into a vector representing
a position in a high-dimensional space. For example, the space
of hand landmark orientations that would be considered to
be an A would form some region in the high dimensional
space, and support vector machines are inherently effective
at classifying these types of regions. This model corresponds
with our common way of understanding hand signs - according
to the relative locations of the fingers, instead of the exact
image of a hand. It is better to use one model to locate general
hand features (Mediapipe), then another to parse those features
into different hand signs (SVM).

III. RESULTS

All the code and demos can be found on our teams github
page.

TABLE I
TABLE SHOWING THE EXPERIMENTAL RESULTS FROM TRAINING THE ASL

RECOGNITION MODELS ON THE LISTED DATA SETS.

Model Model Type Data Set Accuracy
ASL model1 CNN MNIST from Kaggle 91.37%
ASL model2 CNN MNIST from Kaggle 99.74%
ASL model3 CNN Kaggle data set #2 99.84%
svm landmark model1 SVM Kaggle data set #3 98.61%
svm landmark model2 SVM Kaggle data set #3 98.58%

Even though all the models were able to perform well on
their own data sets, they did not all perform equally well in
practice. When running live video, all of the convolutional
models had issues with being overconfident at times when
there was a hand in the frame, but the hand was giving
hand sign that was not recognized by ASL. However, the
support vector machine models, which ran off of the hand
landmark data, were as accurate as during training as they were
during real-time testing. The SVM models were also much less
computationally slow to run, allowing for a smoother frame
rate during a demo.

IV. CONCLUSION

In conclusion, our ASL prediction model has demonstrated
exceptional performance in live predictions compared to other
related works, indicating its significance in the field of Amer-
ican Sign Language recognition. Our model’s performance is
attributed to using an SVM-based classification using extracted
hand landmarks instead of a CNN-based approach. This ap-
proach allowed us to overcome some of the limitations of the
datasets available and allowed for fewer parameter inputs to
the model. Resulting in a more efficient and accurate model.
Our model’s accuracy in predicting hand gestures in real-time
is a testament to the effectiveness of our approach.

Our immediate next steps for improving our ASL prediction
model involve increasing prediction accuracy and improving
the control logic for creating strings of letters to make words.
To achieve this, We will create our own dataset to ensure that it
is more accurate and complete. The data sets our group could
find all had inherent faults, ranging from too small data sets,
and data sets with low variance in images, to having incorrect
labeling for whole single letters. By including more images of
hand signs taken from vertically rotated angles in the data set,
the model will better predict letters that have been rotated.

Additionally, we would like to expand the current model’s
alphabet to include the digits 0-9. A more comprehensive data
set would be required including signs for the digits. We will
then integrate this data into our model and train it to recognize
these new features accurately. This model would still be using
a rolling average of the previous frames’s predictions to predict
the current letter.

Looking further ahead, we would like to develop an app that
can perform these predictions, making ASL communication
more accessible and efficient. With these improvements, we
are confident that our ASL prediction model will become a
valuable tool for promoting the learning of ASL and increasing
the ability to communicate in sign language with people with
hearing impairments.

REFERENCES

[1] [Name]. [Name of item]. [location], [year]
[2] Sangeetha Rao. Signer - AI Sign Translator. Apple App Store, 2022.
[3] Andrew Ryan. signTranslator. Apple App Store, 2022.
[4] Google. Mediapipe. Github, 2022
[5] Google. Mediapipe - Hands. Mediapipe website, 2022
[6] Md. Moklesur Rahman, Md. Shafiqul Islam†, Md. Hafizur Rahman,

Roberto Sassi§, Massimo W. Rivolta, Md Aktaruzzaman. A New Bench-
mark on American Sign LanguageRecognition using Convolutional
Neural Network. ASL Essay, 2019.

[7] Kaggle username: tecperson. Sign Language MNIST. Kaggle Website,
2018.

[8] Muhammad Ali. Sign Language for Alphabets. Kaggle Website, 2020.
[9] Akash. ASL Alphabet. Kaggle Website, 2018.

[10] Quantiphi. Sign Language Recognition. AWS Marketplace website, Na.
[11] Zsolt Robotka, János Rovnyai, János Rovnyai, Sean, Jesada Pua, Judit

Tóth-Molnár, Dávid Retek, Derek Frank, Mihály Pintér, Dávid Pálházi,
Shreya Bhattacharya, Helga Mária Szabó, Éva Sáfár. SIGNALL, Signall
Main page, 2022

https://github.com/hendrixgg/qmind-SLR2
https://apps.apple.com/ca/app/signer-ai-sign-translator/id6443756654
https://apps.apple.com/ca/app/signtranslator/id1592412766
https://github.com/google/mediapipe
https://google.github.io/mediapipe/solutions/hands.html
https://www.researchgate.net/publication/340686365_A_New_Benchmark_on_American_Sign_Language_Recognition_using_Convolutional_Neural_Network
https://www.kaggle.com/datasets/datamunge/sign-language-mnist
https://www.kaggle.com/datasets/muhammadkhalid/sign-language-for-alphabets
https://www.kaggle.com/datasets/grassknoted/asl-alphabet
https://aws.amazon.com/marketplace/pp/prodview-obbfxndcsveyg
https://www.signall.us/
https://www.signall.us/

Towards the Responsible Development of AI
Seth Grief-Albert
Queen’s University

seth.griefalbert@queensu.ca

Cyrus Fung
Queen’s University
19thcf@queensu.ca

Aamiya Sidhu
Queen’s University

21as226@queensu.ca

I. INTRODUCTION

Progress in Artificial Intelligence (AI) is accelerating at an
unprecedented rate. The introduction of AI applications into
the public domain will have profound effects on several institu-
tions across healthcare, industry, and beyond. This necessitates
reevaluating the ways in which revolutionary technology has
been and continues to be developed. Social media offers a
cautionary tale, that entrenched attitudes towards innovation
at any cost have led to negative consequences. This attitude
is incompatible with developing technology ethically. A shift
in focus from rapid development to responsible development
is necessary, calling for a more thoughtful approach to the
creation and deployment of AI.

II. RADICAL DISRUPTION

We are at a point where moving fast and breaking things
has solidified itself as a driving force behind innovation. The
biggest disruptors in AI are the same platforms that used this
very idea to emerge as global conglomerates.

At the outset of the social media revolution, the mantra
“move fast and break things” voiced by Mark Zuckerberg
reflected the budding entrepreneurial attitude towards innova-
tion [1]. This idea emerged as social media was being built
as a call for fast progress and repeated iteration, at the cost
of careful deployment. Social media represented a paradigm
shift in communication towards a personalized network with
unprecedented monetization potential. Data fuels social media.
In the process of engaging with platforms, users generate
information that is applicable to advertising. In 2020, over
97% of Meta’s revenue was from advertising [2]. With a major
market share and a highly secure profit stream, it is entirely
rational for businesses like Meta to keep advertisers as clients,
and make decisions with the interests of advertisers in mind.

At the same time, when technological progress moves
faster than regulation and ethical guidelines, massive systems
with murky purposes and emergent phenomena can arise.
Without guardrails, negative consequences can easily manifest.
A prominent phenomenon on social networks is the echo
chamber. Echo chambers are characterized as radically exclu-
sive social structures, with the potential to harm vulnerable
online communities [3]. With little oversight and algorithms
that prioritize personalization, echo chambers have established
themselves throughout social media [4]. Algorithmic personal-
ization is based on the interactions and engagement of a user,
and content that someone is more likely to engage with is
fed to their home screen [5]. Thus, pre-existing biases can

take root, presenting a warped view of the world. During
the COVID-19 pandemic, health misinformation proliferated
online throughout social media [6]. Additionally, trust in social
media has risen to a point where many people solely engage
with it for their news [7]. The disruption of powerful technol-
ogy over time paints a picture that moving fast and dismissing
consequences is misaligned with the goals of beneficial and
ethical application.

III. THE STATE OF AI
A. Bias in AI

From 2015 to 2021, the compound growth rate in AI-related
patents was 76.9% [8]. Implementing novel developments in
AI as fast as possible has produced numerous gaps, because
the positive performance of AI is predicated on good data.
Faulty data ravages applications in criminal law, advertising,
recruiting, and computer vision [9]. It is thus necessary to
evaluate the approach taken by enterprises towards data.

A black box system is characterized by inaccessible op-
erations and explanations of outputs. In machine learning, a
subset of AI, systems are created purely from data for use in
algorithmic processing [10]. The output of complex systems
in AI can be dictated by billions of components, potentially
transcending human understanding of internal operations. Yet,
the societal impact of these systems is significant. One such
case is the COMPAS algorithm, which has been used to
determine the likelihood of a criminal becoming a repeat
offender [11]. These systems rely on historical data from eras
with different laws and political views, making them highly
susceptible to human bias [11]. When flawed data is applied
to black box systems, a lack of transparency for developers
and consumers has negative impacts.

Algorithmic bias in AI is defined as “systematic and repeat-
able errors in a computer system that create unfair outcomes,
such as privileging one arbitrary group of users over another”
[12]. This bias has become one of the most pressing issues in
modern AI applications. Bias is especially relevant in health-
care, where impacts can greatly affect the lives of individuals.
Overarching problems with the use of AI in healthcare involve
fairness, lack of context, and non-explainability. As it stands,
inequities within western society and healthcare systems result
in a lack of quantitative metrics of fairness. This leaves
interpreters of medical evaluations responsible for reducing
bias [13]. Healthcare and treatments for individuals are specific
to their context which includes an individual’s environment,
culture, socioeconomic status, lifestyle choices and genetics

[13]. Given the number of variables, intersectional impacts,
and lack of data for major population groups, AI applications
in healthcare currently lack the ability to provide accurate data
for underrepresented populations [13]. Because of the power
and influence of AI algorithms, black box systems can leave
data scientists, clinicians, and patients without knowledge of
how predictions are being made. This has detrimental effects
as progress accelerates and AI becomes increasingly present
in healthcare [13]. The potential consequences of inequitable
training data are severe. Today, several facial recognition
training datasets mostly contain images of white males [9].
In tests with recent image recognition models such as CLIP,
Black people could be misclassified as non-human [8].

B. Intellectual Property

The massive scale and black-box nature of generative mod-
els further complicates legal and ethical concerns regarding
intellectual property. Models such as GPT-3, Copilot, and
DALL-E 2 are trained on large amounts of data scraped
from the internet, which inevitably contains copyrighted data
[19]. A user could plausibly generate an output that closely
resembles copyrighted data, by fine-tuning GPT-3 (a language
generation model) with samples from a specific author in order
to pass off its output as an original product. Models can also
infringe on copyright by directly regurgitating training data in
their outputs, potentially misleading users into thinking that
it is a novel creation and not stolen intellectual property. For
example, Copilot has been found to generate large sections of
copyrighted code verbatim, leading to a class-action lawsuit
against its creators for violating the rights of the millions
of GitHub users who published code under an open-source
license [20].

As awareness of the risk that generative models pose to
intellectual property rights grows by the day, most companies
filter prompts to dissuade claims that they are facilitating theft
or turning a blind eye. Unfortunately, user-level interactions
only represent the tip of the iceberg of copyright infringement
in AI. A lack of regulation and oversight gives companies
ample opportunities to exploit loopholes that allow them
to violate copyright to generate profit, while also shield-
ing themselves from accountability. One such loophole is
“data laundering,” where for-profit companies strengthen their
claims of fair use and profit off of copyrighted information by
outsourcing the training and dataset collection process to non-
profit entities [12]. Consider the text-to-image latent diffusion
model Stable Diffusion by Stability AI, which has already
been implicated in several copyright infringement lawsuits
and is widely controversial amongst human artists [15]. One
might believe that Stability AI was the creator of their flagship
model, but a quick look at its GitHub repository reveals
that it was trained by researchers at the Ludwig-Maximilians
University of Munich using ”a generous compute donation
from Stability AI” [16]. The dataset used to train the model
was not collected directly by Stability AI either: instead, it
came from a non-profit organization called LAION, which also
received compute resources from Stability AI [17]. The degree

of separation that data laundering creates protects companies
in two ways. Firstly, since these models were technically
created for non-profit or academic purposes, most courts would
consider them as falling under fair use. Secondly, in the
event of unwanted scrutiny, public attention or legal liability
can be redirected from the parent corporation to the non-
profit organization that created the model with its funding
and guidance. This allows corporations to convert what is
ostensibly academic research into a monetized product while
minimizing legal risk, as seen with Stability AI’s product
DreamStudio (essentially a consumer-friendly wrapper around
the Stable Diffusion API). Without the appropriate regulatory
oversight in place, continuing to move fast and break things
in AI will only lead to unprecedented levels of intellectual
property theft, harming both consumers and producers who
cannot afford to keep up.

IV. RESPONSIBLY DEVELOPING AI

AI can only move as fast as the data that powers it and the
regulation that guides it. Key to the responsible development
of AI is transparency and accountability to stakeholders. The
nature of black-box technology in machine learning applica-
tions poses a barrier to transparency and explainability. Trans-
parency in data sourcing is an important aspect of ethical AI
deployment. Data is the backbone of AI. This leads to external
failure when data is non-representative, perpetuating human
bias and leading to real harm [9]. Creating representative,
equitable data is difficult when many companies outsource this
task to third parties, thus obscuring responsibility.

Accountability in AI must be applied to every step of
system development, from initial design to system monitoring.
An accountable AI system encompasses four dimensions:
strong governance, understanding the data, clear performance
goals, and continuous monitoring [18]. The governance of
a system includes ensuring the work-force is well-rounded
with diverse perspective, has broad stakeholders, and strong
risk-management. Accountability also requires documentation
at every level. This includes technical specifications, system
compliance and output, potential issues, and performance
assessments [18]. Documentation must be available to stake-
holders along with design and operation information. Most
significantly, strong governance puts emphasis on the respon-
sibilities of the authorities that control the deployment of
the system. Accountability in a system entails a thorough
understanding of the data that is used to create a model, and
that understanding remains while the system is in operation. In
addition, reliability and representativeness of the data must be
understood to look for bias, inequities, and societal concerns
from applications of the system [18]. Performance goals must
be clear, well-documented, and stable from the first stages
of development until the system is operational [18]. This
includes performance assessments of the overall system and
its individual components. The monitoring of a system entails
having a set range that allows the system to “drift” and
must allow for continuous questioning about the function
and importance of the system [18]. Long-term monitoring

assessment and changes to a system must be done to assess if
the system is still working and more importantly, if the system
is still required.

V. CONCLUSION

Charging into the future as fast as possible leaves little
time for true understanding of the societal implications of
AI. Although a significant body of work has already been
advanced regarding AI safety, concrete implementations by
governments and corporations are still lacking. This may not
just be a result of inertia or competing incentives, but could
also be a natural product of the black-box nature of many AI
systems. This makes defining key factors such as transparency,
accountability, and reliability a difficult and possibly even
intractable task. Without a clear and unambiguous means of
evaluating outcomes of AI applications for both government
and corporate bodies, the window of responsible development
of AI appears to be shrinking rapidly. Legally enforced regu-
latory frameworks and bodies may be necessary to ensure that
AI systems adhere to the aforementioned metrics. However,
these frameworks must be highly flexible to handle ambiguity,
and also to keep up with the rapid evolution of AI safety going
forwards. By shifting the focus from innovation at any cost
to an attitude of discretion and foresight, the revolutionary
potential of AI can be harnessed for the benefit of all.

REFERENCES

[1] J. Liles, “Did Mark Zuckerberg say, ’move fast and break things’?,”
Snopes, 29-Jul-2022. [Online]. Available: https://www.snopes.com/fact-
check/move-fast-break-things-facebook-motto/. [Accessed: 12-Mar-
2023].

[2] S. Dixon, “Annual advertising revenue of Meta Platforms world-
wide from 2009 to 2022,” Statista, 13-Feb-2023. [Online]. Avail-
able: https://www.statista.com/statistics/271258/facebooks-advertising-
revenue-worldwide/. [Accessed: 03-Mar-2023].

[3] C. T. Nguyen, “ECHO CHAMBERS AND EPISTEMIC BUBBLES,”
Episteme, vol. 17, no. 2, pp. 141–161, 2020.

[4] C. T. Nguyen (2021). How Twitter gamifies communication. In Jennifer
Lackey (ed.), Applied Epistemology. Oxford University Press. pp. 410-
436.

[5] Meta, “What kinds of posts will I see in Feed on
Facebook?,” Facebook Help Center. [Online]. Available:
https://www.facebook.com/help/166738576721085. [Accessed: 03-
Mar-2023].

[6] V. Suarez-Lledo and J. Alvarez-Galvez, “Prevalence of Health Misin-
formation on Social Media: Systematic Review,” Journal of Medical
Internet Research, vol. 23, no. 1, Jan. 2021.

[7] J. Liedke and J. Gottfried, “U.S. adults under 30 now trust
information from social media almost as much as from national
news outlets,” Pew Research Center, 27-Oct-2022. [Online]. Available:
https://www.pewresearch.org/fact-tank/2022/10/27/u-s-adults-under-
30-now-trust-information-from-social-media-almost-as-much-as-from-
national-news-outlets/. [Accessed: 03-Mar-2023].

[8] D. Zhang et al., “The AI Index 2022 Annual Report,” AI Index
Steering Committee, Stanford Institute for Human-Centered AI, Stanford
University, March 2022.

[9] N. Turner Lee, P. Resnick, and G. Barton, “Algorithmic bias
detection and mitigation: Best practices and policies to reduce
consumer harms,” Brookings, 22-May-2019. [Online]. Available:
https://www.brookings.edu/research/algorithmic-bias-detection-and-
mitigation-best-practices-and-policies-to-reduce-consumer-harms/.
[Accessed: 03-Mar-2023].

[10] C. Rudin and J. Radin, “Why are we using black box models in AI
when we don’t need to? A lesson from an explainable AI competi-
tion,” Harvard Data Science Review, 22-Nov-2019. [Online]. Available:
https://hdsr.mitpress.mit.edu/pub/f9kuryi8/release/8. [Accessed: 03-Mar-
2023].

[11] T. Cassauwers, “Horizon Magazine,” Horizon, 01-Dec-2020. [Online].
Available: https://ec.europa.eu/research-and-innovation/en/horizon-
magazine. [Accessed: 03-Mar-2023].

[12] “Research guides: Algorithm bias: Home,” Home - Algorithm Bias -
Research Guides at The Florida State University, 23-Sep-2021. [On-
line]. Available: https://guides.lib.fsu.edu/algorithm. [Accessed: 03-Mar-
2023].

[13] T. Panch, H. Mattie, and R. Atun, “Artificial Intelligence
and algorithmic bias: Implications for health systems,”
Journal of global health, Dec-2019. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6875681/. [Accessed:
03-Mar-2023].

[14] A. Baio, “AI data laundering: How academic and nonprofit researchers
shield tech companies from Accountability,” Waxy.org, 30-Sep-2022.
[Online]. Available: https://waxy.org/2022/09/ai-data-laundering-
how-academic-and-nonprofit-researchers-shield-tech-companies-from-
accountability/. [Accessed: 01-Mar-2023].

[15] A. Martin, “Lawsuits over stability AI’s stable diffusion could threaten
the future of AI-generated art,” Business Insider. [Online]. Available:
https://www.businessinsider.com/stable-diffusion-lawsuit-getty-images-
stablility-ai-art-future-2023-1. [Accessed: 28-Feb-2023].

[16] Stability AI, “Stability-ai/stablediffusion: High-resolution image syn-
thesis with Latent Diffusion Models,” GitHub. [Online]. Avail-
able: https://github.com/Stability-AI/stablediffusion. [Accessed: 01-Mar-
2023].

[17] R. Beaumont, “5B: A new era of open large-scale multi-modal datasets,”
LAION. [Online]. Available: https://laion.ai/blog/laion-5b/. [Accessed:
01-Mar-2023].

[18] S. Sanford, “How to build accountability into your ai,” Harvard Business
Review, 30-Aug-2021. [Online]. Available: https://hbr.org/2021/08/how-
to-build-accountability-into-your-ai. [Accessed: 03-Mar-2023].

[19] C. Xiang, “Ai is probably using your images and it’s not
easy to opt out,” VICE, 26-Sep-2022. [Online]. Available:
https://www.vice.com/en/article/3ad58k/ai-is-probably-using-your-
images-and-its-not-easy-to-opt-out. [Accessed: 03-Mar-2023].

[20] R. Losio, “First Open Source copyright lawsuit challenges
github copilot,” InfoQ, 18-Nov-2022. [Online]. Available:
https://www.infoq.com/news/2022/11/lawsuit-github-copilot/.
[Accessed: 03-Mar-2023].

Utilizing Sentence Transformers To Preform
Semantic Searches

Bryson Reid
Queens University

19BWR@queensu.ca

Henry Xiu
Queens University

henryxiu2005@gmail.com

Joseph Moraru
Queens University

jos.moraru@gmail.com

Eric Lange University
Queens

17ewl@queensu.ca

Abstract—A Bert based sentence transformer model was
trained and applied to preform semantic searches in an advanced
word find web application to increase learning productivity when
searching through PDF documents.

I. INTRODUCTION

Sentence Transformers are a new type of NLP tool which
can tokenize entire sentences for many different use cases. One
such use case is sentence semantic matching, this means that a
machine learning model can deduce how similar two phrases
are in meaning regardless of sentence length and specific term
matching. This report highlights the general process to training
a sentence transformer model and specifically how a model
was trained and used to preform semantic searches in a PDF
document.

A. Motivation
The general word find that is found in most products simply

consists of looking for the exact phrase input by the user, while
this can be very helpful if you want to search for something
you know for sure is in the text it is not very useful when
all you have is a general idea of what you’re looking for.
When learning new skills and researching topics there are
many situations where you might have a general topic to
search for and a classical word find may return too many
terms or none at all. An advanced word find A.K.A semantic
word search returns similar phrases in a document to the key
term, this allows for more complex and detailed searches in
a document that may not actually exist. To achieve this, a
sentence transformer model can be trained and implemented
to identify similarity between sentences.

B. Related Works
The sentence transformer model is a relatively recent addi-

tion to nlp. It utilizes the standard transformer model along
with some extra layers to put sentences into a vector space
for comparison. Project we have referenced used the pre-
trained BERT transformer model, an averaging layer, and
a condensing layer to form the model. Many open source
projects focus either on the training stages of the model or the
operation and don’t include the full process which is what this
project aimed to do. Hugging Face gives the example of using
a sentence transformer to create a search engine for frequently
asked questions in GitHub and TensorFlow demonstrates a
project doing similar work but for news headlines [1] [2]. This

Project aimed to create a functioning web app that utilizes
a trained sentence transformer model to perform semantic
searches on uploaded PDF’s. This project Works very similarly
to previous projects published by Hugging Face and tensor
flow through applying the model to sentences in a PDF and
searching through this list of sentences.

Hugging face and the Sentence-Transformers library doc-
umentation provide excellent instruction on the ways to train
this type of model. Firstly the model itself can consist of multi-
ple modules, that is, layers which execute consecutively. These
layers include a word embedding model and a pooling model
which can also include dense, bag of words, and convolutional
layers. The model can then be trained on different formats of
data sets listed below [3].

1) Example is a pair of sentences and a label indicating
similarity. The label can be either an integer or float.

2) Example is a pair of similar sentences without a label.
3) Example is a sentence with an integer label. This data

format is easily converted by loss functions into three
sentences (triplets) where the first is an ”anchor”, the
second a ”positive” of the same class as the anchor, and
the third a ”negative” of a different class. Each sentence
has an integer label indicating the class to which it
belongs.

4) The example is a triplet (anchor, positive, negative)
without classes or labels for the sentences.

A loss function is then required to recognise the similarity
between sentence embedding. Different loss functions are
required for the different formats of data sets and some loss
functions may be more suited to the specific task required of
the model which is why one form of data may be preferable
to another [3] [4].

Once all of these factors have been decided then the code is
quite simple to finally create and train the sentence transformer
model.

C. Problem Definition
The problem our team tried to solve was to train and

implement an effective sentence transformer model that can be
used to preform semantic searches on a PDF. This tool should
be easily accessible, simple to use, and accurately return
semantic terms. This tool is meant to be used by students
who find themselves looking through large technical and none
technical documents.

Some problems that were faced in this project included
training a sentence transformer model, effectively delimiting
a PDF into its sentences in Python, implementing the model
in Python, and creating a front end interface that can utilize
the Python back end.

II. METHODOLOGY

There were two main sections that went into this project,
training the sentence transformer, and implementing it. Based
off the previous research, the specific training methods are
detailed below. Training

1) First, the model needed to be formed using three layers,
a BERT transformer model, an average pooling layer,
and a condensing layer.

2) Second, the snli data set was imported for the model to
train on.

3) Third, the training data was extracted from the data set
and formatted properly for the model to train.

4) Finally, the model was trained on over 500k training
data points which consisted of two sentences and a 0,1
or 2 indicating if they contained the same, similar, or
opposite meaning.

implimentation

1) First, PDF’s were imported and delimited using the PDF
miner six library.

2) Second, the sentence transformer model was imported.
3) Third, functions were defined to return semantic search

results from the model.
4) Lastly, a front end web application was created so users

could upload a PDF, and utilize the functions which were
connected to the front end.

III. CONCLUSION

This report demonstrates an effective use case for sen-
tence transformer models and how to train one from scratch.
Implementing a sentence transformer to preform semantic
searches on a document allows for increased productivity when
searching for information in a large document where classical
key term searching fails.

REFERENCES

[1] Hugging Face, “Semantic search with FAISS,” The Hugging
Face Course, 2022. https://huggingface.co/course/chapter5/6?fw=tf#
semantic-search-with-faiss

[2] TensorFlow, “Semantic Search with Approximate Near-
est Neighbors and Text Embeddings,” Jan. 13, 2021.
’https://www.tensorflow.org/hub/tutorials/semantic approximate nearest neighbors’

[3] O. Espejel, “Train and Fine-Tune Sentence Transformers Models,”
Hugging Face, Aug. 10, 2022. https://huggingface.co/blog/how-to-train-
sentence-transformers#: :text=To

[4] N. Reimers, “Training Overview,” Sentence-Transformers, 2022.
https://www.sbert.net/docs/training/overview.html

